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Abstract  

The concept of fractal was popularized by Mandelbrot as a tool to tame the geometrical 

structure of objects with infinite hierarchical depth. The key aspect of fractals is the use of 

simple parsimonious rules and initial conditions, which when applied recursively can generate 

unbounded complexity. Fractals are structures ubiquitous in nature, being present in coast lines, 

bacteria colonies, trees, and physiological time series. However, within the field of cognitive 

science the core question is not which phenomena can generate fractal structures, but whether 

human or animal minds can represent recursive processes, and if so in which domains. In this 

chapter we will explore the cognitive and neural mechanisms underlying the representation of 

recursive hierarchical embedding. Language is the domain in which this capacity is best 

studied. Humans can generate an infinite array of hierarchically structured sentences, and this 

capacity distinguishes us from other species. However, recent research suggests that humans 

can represent similar structures in the domains of music, vision and action and has provided 

additional cues as to how these capacities are cognitively implemented. Using a comparative 

approach, we will map the commonalities and differences across domains and offer a roadmap 

to understand the neurobiological implementation of fractal cognition.  
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1 Introduction 

 

Hierarchies, intuitively understood as structures with multiple levels of organization, are 

common in nature. The most paradigmatic example of a hierarchy is that of a tree, with a trunk, 

branches, sub-branches, and leaves. In a tree, several branches originate from the trunk, several 

sub-branches originate from each branch, and several leaves sprout from each sub-branch. This 

“branching” property, in which one item at level of organization L(i) connects with two or 

more items at a subordinate level L(i+1), is the key feature of all hierarchies (Fig. 1a) (Udden 

et al., 2019). It is therefore no surprise that the metaphor of tree is used to describe hierarchies 

in multiple domains.  

 

Fractals are a kind of hierarchy which can have an unbounded number of structural levels. 

When trying to measure the length of coast lines, Mandelbrot understood that the measured 

length depended on the size of the ruler (Mandelbrot, 1977). When using smaller rulers, more 

and more infinitesimal segments of the coastline could be revealed increasing its length 

potentially to infinity. The crucial insight of Mandelbrot was that these structures with 

infinitesimal details often displayed the property of self-similarity, i.e., they often have 

regularities across levels of organization, which allow for parsimonious formal descriptions 

(Fig. 1b). In other words, Mandelbrot understood that we could describe natural objects with 

unbounded hierarchical depth using simple sets of rules. To do so we need: a description of 



initial conditions, certain transformation rules, and the ability to apply these rules recursively, 

i.e., to feed the output of the operation back to itself as input (Fig. 1c).  

 

 

Fig. 1 (A) Hierarchies are tree-like structures in which an element at a level L(i) (e.g. trunk) 

connects with two or more elements at a subordinate level L(i+1) (e.g. branches); (B) Fractals 

are structures in which this “hierarchical branching” can extend to infinity by using 

transformation rules consistent across multiple levels L(1), L(2), L(3) … ; (C) To generate 

fractals we need an initial condition L(0), a transformation rule {L(i+1) → L(i) + some 

operation}, and a loop. In this case, the initial condition L(0) is a black circle, the 

transformation rule generates L(i+1) by “adding 5 circles at particular angles and distance 

relative each circle in L(i)”, and then the same rule can applied to each newly added circle, 

recursively, to generate fractal (B). 

 

Defined as such, we can find fractal structures not only in coast lines and trees, but also in 

bacteria colonies (Matsuyama & Matsushita, 1993), worm behavioral responses (Arata et al., 

2022), tissue structure (e.g. human lungs and blood vessels) and physiological signals such as 

electroencephalogram (EEG) and electrocardiogram (ECG) time series (Ruiz-Padial & Ibáñez-

Molina, 2018; Tiwari et al., 2019). In all these domains we can find complex multilayered 

signals with structural self-similarity. However, the fact that these signals can be generated by 

natural phenomena does not make them immediately relevant or transparent for the human 

cognitive level. Our fractal EEG or ECG time series are not immediately transparent to our 

perception without sophisticated technology. Similarly, the fact that bacteria colonies can grow 

in a fractal pattern does not mean that this structure is represented by the bacteria themselves. 

Hence, from the perspective of cognitive science the relevant question is whether human and 

animal minds can represent the kinds of recursive processes that generate fractals (Lobina, 

2017; Martins, 2012). In the next section we will discuss how the representation of these 

generative processes can be experimentally investigated. 

 

1.1 Recursion in human cognition 

 

Humans are exceptional in their ability to generate complex and unbounded hierarchical 

structures, across a variety of domains, including in the social domain, visuo-spatial processing, 

action planning, and in language. In all these domains we are able not only to recognize 

underlying hierarchical structures but also to extend them beyond the given in a way that is 



consistent with the previous levels. Imagine the complex hierarchical structure denoting a 

national defense system composed of several armies, battalions etc. We can always go beyond 

the given and create supra-national command levels dominant over (but consistent with) the 

national structures (think of NATO). Similarly, in the language domain, we can create an 

infinite set of structured expressions from a finite set of words and hierarchical rules. For 

example, we could imagine an arbitrarily long sentence S, and embed it within the sentence “I 

think that [S]”. We could then embed the resulting sentence in “Peter thinks that [I think that 

[S]]”, and so on. 

 

The cognitive and neural mechanisms underlying the capacity to recursively embed hierarchies 

within higher-order structures – or to add new levels beyond the given - are an exciting and 

very active topic of research (Martins, 2012, for a review). For example, within the domain of 

language, the generative syntax tradition proposes that there is a core recursive cognitive 

system which allows the generation of unbounded complexity from a finite set of primitives 

and rules (Berwick & Chomsky, 2015; Friederici et al., 2017; Hauser et al., 2002; Perfors et 

al., 2010, 2011). These syntactic rules govern how different syntactic categories (nouns, verbs, 

etc.) can be combined to generate increasingly complex sentences. Consider the following 

system to generate noun phrases (NP), verb phrases (VP) and sentences (S) using determinants 

(D), nouns (N) and verbs (V): 

 

1. NP →(D) N 

2. VP → V (NP) 

3. S → NP VP 

 

With these rules, we can generate the noun and verb phrases:  

 

NP → [theD girlN]NP;  

VP → [openedV the doorNP]VP 

 

and combine them to form a sentence:  

 

S → [[the girl]NP [opened the door]VP]S 

 

Unlike in the visual domain, in language we rarely have self-similarity at the surface level. 

While sentences like “[I think that [Peter thinks that [Susan thinks that [S]]]]” can exist, they 

are rare. Mostly, self-similarity exists at a deeper conceptual level. For instance, the compound 

noun “[[[student] film] committee]” can be translated as NPs embedded within NPs 

([[[NP]NP]NP]) using the generative rule NP → [[NP]NP]. These rules, like fractals, involve 

direct recursion, in which both sides of the symbol “→” contain objects of the same category. 

However, even such direct recursion is rare in language (Arsenijević & Hinzen, 2012). Most 

commonly, sentences are generated using indirect recursion, i.e., via the combination of a set 

of syntactic rules, which do not necessarily have similar categories on both sides of  “→” 

(Roeper, 2011).  

 

Here is how it works in practice. We can use the rule system above to generate the sentence S’:  

 

S’ → [[the girl]NP [kissed the boy]VP]S 

 

If we modify rule 1 to allow embedding of S’ within a NP, we create an indirect loop between 

NP and S because NP can now contain a S (NP → N S’) and S can contain a NP (S → NP VP). 



With this indirect recursive loop can we can embed S’ within S = “[[the girl]NP [opened the 

door]VP]S”, because the latter contains the NP “the girl”: 

 

S = [[the girl [S’]]NP [opened the door]VP]S.  

 

If we now re-write S including S’, and use the appropriate pronoun, we obtain the following 

sentence (see Fig.2 for a graphical description): 

 

[[the girl [who kissed the boy]S’]NP [opened the door]VP]S 

 

This system can be applied to generate sentences of unbounded depth by allowing sentences to 

be embedded within other sentences. 

 

The core point, made in a seminal paper by Hauser, Chomsky and Fitch  is that “Language is 

based on a recursive generative procedure that takes elements from [...] the lexicon, and applies 

repeatedly to yield structured expressions, without bound” (Hauser et al., 2002). Crucially, this 

idea of recursion in language requires more than the mathematical notion of “definition by 

induction” which requires initial conditions and a recursive function (Odifreddi, 1989). For 

example, the set of natural numbers can be generated using the initial condition L(0) = 1, and 

the recursive function L(i+1) = L(i)+1. When applied recursively, the function generates the 

set {1, 2, 3, …, n}. However, natural numbers are not hierarchical, hence classical recursion is 

not sufficient to describe fractals. Recursion in language also requires that the rule allows the 

generation of new hierarchical levels via structural embedding (e.g NP → [[NP]NP]). Thus, 

when we talk about recursion in language, we are mainly referring to Recursive Hierarchical 

Embedding (henceforth RHE), which is the focus of our chapter. 

 

RHE as a procedure to generate complex hierarchies from a finite set of rules and primitive 

elements allows us to model other phenomena present in human cognition. Beyond the domains 

of language and vision (Fitch et al., 2005; Hauser et al., 2002; Jackendoff & Pinker, 2005; 

Pinker & Jackendoff, 2005), also music and action planning contain complex hierarchical 

structures which can be generated and represented using RHE (Badre, 2008; Fadiga et al., 2009; 

Fitch & Martins, 2014; Jackendoff, 2003; Jackendoff & Lerdahl, 2006; Lerdahl & Jackendoff, 

1977; Rohrmeier & Koelsch, 2012). 

 

Below, we will discuss the state of the art on how the representation of RHE is instantiated in 

the cognitive and neurobiological context. We will start with the domain of linguistic syntax, 

and then discuss how we used musical and motor fractals to investigate the representation of 

RHE in these domains.  

 

2 Neural mechanisms of recursive hierarchical embedding in language 

 

Linguistic utterances are sequential. When we speak or write, we produce words one after the 

other. However, this sequential order is only superficial. To understand the intended meaning 

of a sentence, we also need to project the underlying hierarchical structure (Berwick & 

Chomsky, 2015). For instance, in the sentence “The girl who kissed the boy opened the door”, 

we know that it was the girl who opened the door and not the boy, despite the boy being closer 

to the verb opened in the word sequence. We can infer this relationship automatically because 

the phrase the girl is closer to the verb opened in the hierarchical structure (Fig. 2), i.e., it 

occupies a hierarchical level closer to the verb, in comparison with the boy which is more 

deeply nested. 



 
Fig. 2. Language is hierarchical. In the sentence “the girl who kissed the boy opened the 

door”, the “boy” is closer to the verb “opened” than the “girl”. However, competent English 

speakers can understand that it was “the girl” who “opened the door” and not “the boy”. This 

is because the NP “the girl” is closer to the verb in the hierarchical structure (solid boxes) than 

the NP “the boy”, which is deeply nested in the bottom of the hierarchy (dashed boxes). 

 

When competent adult speakers process language, the hierarchical interpretation takes 

precedence over the sequential interpretation. Consequently, one of the most distinctive 

signatures of hierarchical processing in language is the capacity to process dependencies 

between words which are non-adjacent in the sequential structure. This behavioral signature 

has been extensively used in empirical research (Udden et al., 2019, for a review). 

 

Interestingly, children younger than 7 y.o. might not always be able to inhibit the sequential 

representation, and recursive hierarchical structure seems to develop slowly and requires 

extensive experience (Roeper, 2007, 2009, 2011). For instance, when asked to pick the “second 

red ball” from an array of colored circles, children often chose the ball in the second position 

which is also red. This corresponds to the conjunctive interpretation “second AND red ball” 

which has no hierarchical depth. Conversely, adults can project the structure [second [red 

ball]], and choose (for instance) the fourth circle in the array, but the second one that is red. 

The capacity to represent this nested structure is also a crucial signature used in empirical 

research (Roeper, 2007, 2009, 2011). 

 

When applied to neuroimaging research, these empirical signatures have yielded consistent 

results. The processing of linguistic syntax, hierarchical depth, and non-adjacent dependencies 

strongly correlates with activity in a left lateralized network comprising inferior frontal gyrus 

(IFG) and posterior superior temporal sulcus (pSTS) (extending to middle and superior 

temporal gyri)(Friederici et al., 2017; Hagoort & Indefrey, 2014; Makuuchi et al., 2009; 



Zaccarella et al., 2015). This pattern of activity is present in both natural and artificial languages 

but is modulated by the developmental stage and the amount of experience with hierarchical 

structure (Jeon & Friederici, 2013, 2015; Skeide et al., 2014; Skeide & Friederici, 2016). For 

instance, in children, both syntactic and semantic processing seem to initially correlate with 

activity in left pSTS, but syntax-related activity in IFG becomes more robust later, around 9 

years old (Skeide et al., 2014). Research in adults investigating the learning of artificial 

languages also shows that IFG activity increases with the degree of training and automatization 

(Jeon & Friederici, 2015). These results suggest that there is an optimal neural machinery 

specialized in the processing of hierarchical structure in language. However, stable recruitment 

of this specialized circuitry emerges throughout ontogeny and necessitates a certain volume of 

experience and exposure. In other words, the pattern of brain activity during the acquisition of 

RHE rules in language is different to that found after extensive training and automatization. 

 

This pattern of activity is particularly interesting because IFG and pSTS are among the brain 

structures which underwent rapid expansion in the human lineage in comparison with other 

primates (Buckner & Krienen, 2013; Rilling et al., 2008). Most notably, the fiber tract 

connecting them – the arcuate fasciculus – also underwent dramatic expansion in humans and 

is underdeveloped in human children until the age of 7-8 y.o (Rilling et al., 2008). This could 

explain why the capacity to represent hierarchies in non-human animals is limited in scope  - 

being available perhaps in spatial navigation and social structures (Buzsáki & Moser, 2013; 

Seyfarth & Cheney, 2014) - and depth - not going beyond a few hierarchical levels. The 

necessity of a mature arcuate fasciculus to support the capacity to represent hierarchies could 

also explain why RHE is not present in human children until relatively late. 

 

This set of findings raises interesting questions about human evolution, but it is limited to the 

domain of language. Is RHE available in other domains? If so, does it recruit similar brain 

networks? Is there evidence for domain general acquisition principles; and do we find similar 

domain specialization with experience? Answering these questions requires the extension of 

this research program to other domains. In the next sections we will summarize how we used 

fractals in music (Martins, Gingras, et al., 2017; Martins et al., 2020), action (Martins, Bianco, 

et al., 2019), and vision (Martins, Fischmeister, et al., 2014; Martins et al., 2016) to map the 

cognitive and neural mechanisms supporting RHE in different domains. Using a comparative 

approach, we will analyze the commonalities and differences between domains, and draw the 

larger picture concerning how RHE is implemented in neurocomputational systems. 

 

3 Recursive hierarchical embedding in the visual, musical, and motor domains – 

behavioral research 

 

As we discussed above, words are presented sequentially in language. However, in addition to 

this sequential structure there is an underlying syntactic hierarchy which is represented by 

competent language speakers (Udden et al., 2019). This kind of dual nature – sequential and 

hierarchical – is also present in domains like music and action. Music is composed both by a 

sequence of tones unfolding in time one after the other, but also by an underlying hierarchy of 

tonal tension which goes beyond adjacent relationships (Jackendoff & Lerdahl, 2006; Koelsch 

et al., 2013; Lerdahl & Jackendoff, 1977). Experienced musicians and music listeners can 

detect these tension dynamics along musical phrases and react with surprise when there are 

violations (Koelsch et al., 2013). Similarly, in action, we execute motor commands 

sequentially, one after the other. For instance, in the process of making coffee we must turn on 

the machine, add coffee to the container, add water to the container, place the cup under the 

dispenser and press the button to dispense the coffee. However, in case there is already coffee 



and water in the respective containers, we can skip those steps without getting lost in the 

sequence. This is because we can represent the hierarchical structure underlying the goal of 

making coffee which goes beyond adjacent connections between motor commands one after 

the other (Fitch & Martins, 2014; Jackendoff, 2013; Lashley, 1951). 

 

fMRI research on the musical and motor domains has mostly investigated the responses elicited 

by the processing of tonal and action violations (Fadiga et al., 2009; Fitch & Martins, 2014, for 

reviews). These violations consistently activate IFG across domains in addition to other regions 

more suggestive of domain specialization (e.g. sensorimotor brain areas in the motor domain 

and auditory areas in music) (Bianco et al., 2015, 2016). The common IFG activation between 

language, action and music suggests computational commonalities in the implementation of 

hierarchical representations across these domains (Fadiga et al., 2009; Fitch & Martins, 2014, 

for reviews). However, the exact activity loci can vary.  In music and action, IFG activity is 

stronger in the right hemisphere, and precise comparisons reveal little commonalities between 

domains within left IFG, hinting on a language specialized circuitry (Amunts & Zilles, 2012; 

Fedorenko et al., 2011; Fedorenko & Shain, 2021). This circuit micro-specialization is to be 

expected in the development of expert automatized processing (Asano et al., 2022). However, 

a robust arcuate fasciculus connecting IFG and STS might facilitate similar computations 

across domains, even if the exact loci of activity differ from domain to domain. 

 

This research based on the detection of violations is interesting but presents some confounds. 

The patterns of activity might reflect attention or surprise effects rather than computations 

specific for recursive hierarchical embedding. Moreover, it is not clear whether participants 

must represent the underlying generative processes in these violation paradigms. To investigate 

the latter more specifically we need to tap on the capacity to extend hierarchies beyond the 

given. To resolve this gap, my colleagues and I used the principles of fractal geometry to create 

novel paradigms in the visual, music and action domains (Fig. 3): 

 

 



Fig. 3. (A) General principles of Recursive Hierarchical Embedding (RHE; left) and a 

control task which does not generate new levels of the hierarchy (right). At surface, both 

rules generate the same final structure. However, in the RHE task, each step generates a new 

hierarchical level, while in the control task each step adds elements within a fixed hierarchical 

level without generating new. (B) Visual fractals. These are generated using the rules 

described in A. (C) Tonal fractals. Here the horizontal axis denotes tone duration, and the 

vertical axis denotes pitch. Tonal fractals are generated stepwise from an initial long-duration 

and low-pitch tone. Each step adds a sequence of (higher pitch and shorter duration) tones with 

a particular contour, and pitch relations consistent with the previous level. (D) Motor fractals. 

Each step adds a sequence of finger tapping movements on a silent keyboard (with the thumb, 

index, and middle finger) with contour and key distances consistent to those of the previous 

level. The duration of each finger tap at level dn is shorter than those of level dn-1. 

 

In this research program, we focus on the capacity to represent recursive hierarchical 

embedding, i.e. the ability to extract cross-level regularities and use them productively to 

generate new levels (Martins, 2012). Crucially, we do not focus on how participants represent 

fractal structures per se but rather how participants represent their generative process. Indeed, 

in our control condition, the rule also generates a visual fractal, but without adding new 

hierarchical levels. This controls for stimuli-related features and focuses the representation of 

the underlying RHE process. We expose participants to the first three iterations of the 

generative process and ask them to imagine, and then select (or execute), the next correct 

continuation (Fig. 4b). 

 

We first utilized this paradigm in the visual domain (Martins et al., 2016). We learnt that adult 

humans can easily represent RHE in vision, and that this capacity is neither well predicted by 

general intelligence nor by visual-spatial working memory. However, we found that the 

capacity to process RHE in vision correlates strongly with recursive action planning as 

measured by the Tower of Hanoi, hinting on shared cognitive resources across domains 

(Martins, Gingras, et al., 2017). We also found that this capacity matures slowly, and it is 

available in children older than 8 y.o., but not before (Martins, Laaha, et al., 2014). Similar to 

language, mastering RHE requires experience with simpler conjunctive visual processes, 

before RHE becomes available. These data suggest that there might be some cognitive 

specialization for RHE and shared resources across domains. 

 

To investigate these questions, we developed music and motor tasks (Martins, Bianco, et al., 

2017; Martins, Gingras, et al., 2017) with the same underlying principles (Fig 4c&d). Here, 

each step of the process generated an additional hierarchical level of musical tones, or of finger 

movements presented on a silent keyboard. Broadly, our behavioral research suggests that the 

ability to represent RHE shares cognitive resources across domains, when controlling for 

domain-specific effects. Factor analyses including musical and visual RHE tasks, their 

respective non-recursive controls, and the recursive action planning Tower of Hanoi, show that 

all recursive tasks cluster together within a factor orthogonal to general cognitive capacity 

(Martins, Gingras, et al., 2017).  

 

Recent research in other domains has further hinted on a specialized capacity to the processing 

of hierarchical structures. For example, accuracy in the visual RHE task was found to 

specifically correlate with the understanding of sentences with 2-levels of hierarchical 

embedding, such as “[the bird [who the frog [who is red] washes] laughs]” (Martins, Krause, 

et al., 2019). In this sentence, participants need to parse the non-adjacent relationship between 

bird and laughs. The same visual RHE was found to specifically correlate with the ability to 



parse 2-level if-then logical hierarchies, again when controlling for domain specific variance 

(Scholz, 2020). In this logical task, participants are asked to determine the numeric value of a 

pair of objects based on their relationship. For example, in the hierarchical task, if the first 

object is red and if the shape of the second object is similar to the first one, then the numeric 

value is “3”; if the first object is red and if the shape of the second object is different to the first 

one, then the numeric value is “1”, etc. If the first object is green, numeric contingencies are 

different. In the control – conjunctive - task the value of the pair is simply the sum of the 

individual values without any higher order relation. 

 

In summary, behavioral research suggests that there are specific cognitive resources dedicated 

to the processing of RHE across domains. In the next section we will examine the neural 

systems that support these capacities. 

 

4 Recursive hierarchical embedding in the visual, musical, and motor domains – fMRI 

research 

 

To investigate the neural bases supporting the representation of RHE, we applied similar 

paradigms across domains (Fig. 3). In general, we present participants with the first three steps 

generating a fractal structure and ask participants to imagine the correct continuation of the 

same process. In the visual task, they chose the correct choice from two alternatives (Martins, 

Fischmeister, et al., 2014); in the musical task they decide whether the 4th step is correct or 

incorrect (Martins et al., 2020); and in the motor task they execute the correct 4th step in a 

keyboard inside of the scanner (Martins, Bianco, et al., 2019). In all cases, the control task also 

depicted a control process generating a fractal structure in three steps. However, the latter does 

not entail the generation of new hierarchical levels. This contrast, by keeping the choice and 

execution stimuli constant across conditions, is optimal to isolate the internal representations 

of RHE. Crucially, we focused our fMRI contrasts on the period in which participants are 

imagining the 4th step, after attending to the 3rd (thus a period with internal simulation but 

without external stimulation). 

 

With this design, we found that different domains activate specialized regions. In particular, 

we find bilateral activity in the visual central stream, hippocampus and default mode network 

in the visual task (Fischmeister et al., 2017; Martins, Fischmeister, et al., 2014); bilateral 

activity in STG for the musical domain (Martins et al., 2020); and bilateral activity in 

sensorimotor and premotor areas, basal ganglia and cerebellum in the motor domain (Martins, 

Bianco, et al., 2019)  

 

These findings create an interesting puzzle. Our behavioral studies clearly suggest that the 

implementation of RHE across domains is supported by common cognitive machinery. 

However, our neuroimaging results clearly show that these tasks rely of separate, and domain-

specialized neural circuits. To solve this apparent paradox, we recall our observation that the 

cognitive and neural processes necessary to acquire RHE rules might differ from those used 

for automatic processing after extensive training. 

 

4.1 Acquisition vs. Automatic processing of RHE structures 

 

Traditionally in fMRI experiments, participants are very well trained with the paradigm or task 

that they execute in the scanner. To increase the signal to noise ratio, it is sensible to reduce 

the cognitive variability among participants by excluding those who perform poorly, and by 

bringing participants’ performance close to ceiling in preliminary sessions. Unfortunately, this 



procedure introduces a bias. As we reviewed above for language, the patterns of neural activity 

change with training and experience (Jeon & Friederici, 2015; Skeide & Friederici, 2016). 

After extensive training, neural activity might reflect fast and automatic retrieval of previously 

formed visual, musical, or motor schemas. This access to procedural or declarative long-term 

memory information might be supported by brain networks crucially distinct from those 

supporting the acquisition of RHE.   

 

Following this line of reasoning, we devised paradigms to test which brain regions might be 

critically involved in the acquisition of RHE, by using participants without prior experience 

with our paradigms. In the first study, we tested patients with brain lesions in the left 

hemisphere and mapped the brain lesions which disturbed the process of acquisition of RHE 

in the visual domain (Martins, Krause, et al., 2019). Because lesions can affect both accuracy 

and response times, we used a drift diffusion model to account for behavioral performance 

(Ratcliff & McKoon, 2008; Wiecki et al., 2013). With this model we can combine individual 

accuracy and response time to generate two sensible measures of processing. The first is called 

drift and is the speed with which participants can accumulate information from the stimuli. The 

second is called boundary separation. It measures how much information each patient collects 

before providing an answer and can be seen as a measure of impulsivity or cognitive control. 

 

Using these methods, our main finding was that lesions in the posterior middle temporal gyrus 

negatively decreased the speed of information processing specifically associated with RHE 

(drift) (Martins, Krause, et al., 2019). In addition, we found that lesions in IFG negatively 

impacted cognitive control (boundary separation). This specific brain network is reminiscent 

to that used in the processing of language during the processes of acquisition (posterior 

temporal cortex) (Skeide et al., 2014) and expert processing (IFG) (Jeon & Friederici, 2015; 

Skeide et al., 2014), respectively. Crucially, this experiment also provided behavioral evidence 

for shared resources between visual and linguistic RHE, when controlling for general attention 

and working memory. In other words, when testing untrained participants, we find evidence 

for similar cognitive and neural resources used in the implementation of RHE in different 

domains. 

 

In a second experiment, we tested participants on their ability to parse 2-level if-then logical 

hierarchies as described above (Scholz, 2020; Scholz et al., 2022). We contrasted the 

hierarchical condition (in which the first object determines how the second is interpreted) and 

the flat condition (in which the two objects are interpreted independently). Crucially, our 

participants were given very little training before the scanning session. Under these conditions, 

we found that the processing of hierarchies was supported by a left lateralized network 

comprising IFG and MFG, and pSTS (Scholz et al., 2022). Again, this (left lateralized) pattern 

of activity is reminiscent of syntactic processing in language. Interestingly, the higher the 

number of trails that participants completed, the higher the activity in IFG. This confirms that 

this region plays an essential role in expert processing of complex hierarchical stimuli. 

However, in this experiment, IFG expertise-related activity was confined to the right 

hemisphere. 

 

Altogether, these findings suggest that the acquisition of RHE rules might be supported by 

cognitive and neural systems which are used across domains. However, the longer the training 

with these kinds of structures in each domain, the wider the separation of the neural systems 

supporting their automatized processing. This specialization of neural resources after training 

is consistent with what we know from the neuroscience of learning, and is essential to the 

capacity to retrieve previous experiences from long-term memory to solve similar problems in 



the present. Domain-specialized circuitry leads to faster and more efficient retrieval of 

information, and this is what distinguishes experts from non-experts.  
 
 
 

5 Conclusion – cognitive and neural bases of fractal cognition 

 

Fractals are complex structures with an unbounded number of hierarchical levels. However, 

they can be built with simple generative rules, that once mastered, allow us to tame complexity. 

The capacity to represent recursive hierarchical embedding (RHE) is key to our ability to 

represent fractals and other complex structures. As we reviewed, human adults can use RHE 

to generate fractal-like structures in language, vision, music and in the motor domains. 

 

From the evolutionary point of view, this capacity is interesting because it seems uniquely 

human. Other species can represent simple hierarchies to navigate their social rank and for 

spatial navigation (Buzsáki & Moser, 2013; Seyfarth & Cheney, 2014), but these are limited in 

scope and depth. While a few non-human primates might learn to represent two hierarchical 

levels also in artificial languages, these few individuals require an extensive amount of training 

(Ferrigno et al., 2020). For humans, the acquisition of this capacity is also difficult, as it comes 

late in ontogenetic development. However, once it is available, it enables the representation of 

hierarchies of unlimited depth, and can be used in a multiplicity of domains. 

 

Our review from the literature and our own results point to distinct cognitive and neural systems 

involved in the processing of RHE in humans (Fig. 4).  

 

 
Fig. 4. Commonalities and differences in the processing of recursive hierarchical 

embedding across domains. The left posterior temporal cortex, spanning pSTS and adjacent 

areas, is critically involved in the acquisition of RHE across domains. After extensive training, 

RHE processing becomes supported by increasingly domain-specialized neural regions. 

 

 

First, both in language and in the visual domains, mastery of RHE becomes available after 7-8 

y.o. and it requires previous experience with conjunctive structures (Martins, Laaha, et al., 

2014; Roeper, 2011). Interestingly, this is the age at which the accurate fasciculus matures to 

its distinctively human connectivity pattern (Rilling et al., 2008). Second, we found that the 

two main regions connected via this pathway – IFG and pSTS – were somewhat involved in 



the acquisition of RHE. Left posterior temporal cortex is clearly recruited in the acquisition of 

linguistic syntax (Skeide & Friederici, 2016), logical rules (Scholz et al., 2022), and visual 

fractals (Martins, Krause, et al., 2019), but also in the processing of musical fractals (Martins 

et al., 2020). On the other hand, activity in lateral frontal cortex is less robust and varies 

depending on the level of expertise (Jeon & Friederici, 2015; Martins, Krause, et al., 2019; 

Skeide et al., 2014). These neuroimaging findings fit well with the behavioral research 

suggesting strong co-variance across domains in the capacity to acquire RHE (Martins, 

Gingras, et al., 2017; Martins, Krause, et al., 2019; Scholz, 2020). 

 

On the other hand, and in line with previous literature, we find that expert processing of RHE 

recruits increasingly specialized neural systems which including specific regions within left 

IFG for language (Fedorenko et al., 2011; Jeon & Friederici, 2015; Skeide et al., 2014), right 

IFG for logical hierarchies (Scholz et al., 2022), sensorimotor areas for motor fractals (Martins, 

Bianco, et al., 2019), bilateral STG areas related to melody processing for music fractals 

(Martins et al., 2020), and the visual ventral stream for visual fractals (Martins, Fischmeister, 

et al., 2014). These distinct patterns might reflect domain general mechanisms operating over 

increasingly domain specialized representations (Matchin et al., 2017), better suited for fast, 

automatized and modular processing (Asano et al., 2022).  

 

Finally, in this chapter we only reviewed the role of cortical regions in the implementation of 

RHE representations. However, an increasing body of evidence has implicated subcortical 

regions in both the acquisition and expert representation of these structures. For instance, basal 

ganglia activity is associated with expert processing of RHE in language (Jeon et al., 2014), 

action (Martins, Bianco, et al., 2017), and logical reasoning (Scholz et al., 2022). On the other 

hand, the hippocampus is active in the processing of visual-spatial fractals (Martins, 

Fischmeister, et al., 2014), and especially involved in the processing of higher order elements 

in compositional structures (Scholz et al., 2022). These findings are consistent with the roles 

of the basal ganglia in expert processing hinging on the procedural memory system, and often 

connected with and mirroring IFG activity (Jeon et al., 2014); and with the role of the 

hippocampus in establishing novel compositional structures of the kind items-in-context 

(McKenzie et al., 2016; Ranganath, 2010).  

 

Taken together, these findings suggest that the acquisition and expert processing of fractal 

structures results from the interplay between diverse neural structures and cognitive systems, 

such as those generally involved in procedural and declarative learning, conceptual reasoning, 

and cognitive control, but also regions encoding specialized representations. Mapping the 

precise roles and division of labor between these neural structures is an exciting endeavor for 

future research. 
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