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Humans generate recursive hierarchies in a variety of domains, including linguistic, social

and visuo-spatial modalities. The ability to represent recursive structures has been hy-

pothesized to increase the efficiency of hierarchical processing. Theoretical work together

with recent empirical findings suggests that the ability to represent the self-similar

structure of hierarchical recursive stimuli may be supported by internal neural represen-

tations that compress raw external information and increase efficiency.

In order to explicitly test whether the representation of recursive hierarchies depends

on internalized rules we compared the processing of visual hierarchies represented either

as recursive or non-recursive, using task-free resting-state fMRI data. We aimed to evaluate

the relationship between task-evoked functional networks induced by cognitive repre-

sentations with the corresponding resting-state architecture. We observed increased

connectivity within Default Mode Network (DMN) related brain areas during the repre-

sentation of recursion, while non-recursive representations yielded increased connectivity

within the Fronto-Parietal Control-Network.

Our results suggest that human hierarchical information processing using recursion is

supported by the DMN. In particular, the representation of recursion seems to constitute an

internally-biased mode of information-processing that is mediated by both the core and

dorsal-medial subsystems of the DMN. Compressed internal rule representations mediated

by the DMN may help humans to represent and process hierarchical structures in complex

environments by considerably reducing information processing load.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to understand and generate complex hierarchical

structures is a hallmark trait of human cognition. The inves-

tigation of the neural bases of hierarchical processing is thus

essential to understand the foundations of human cognitive

architecture.

Recursion is a cognitive faculty postulated to play a sig-

nificant role in human hierarchical processing (Corballis,

2011; Fitch, 2010; Hauser, Chomsky, & Fitch, 2002). In partic-

ular, recursion is thought to be necessary to achieve infinite

use of finite means, and hypothesized to be available exclu-

sively to humans (Fitch, Hauser, & Chomsky, 2005; Hauser

et al., 2002). A simple example of a recursive process is the

generation of natural numbers using the formula

Ni ¼ Ni�1 þ 1, in which both sides of the “transformation” rule

contain elements belonging to the category “N”. This simple

process allows the generation of the infinite set of natural

numbers.

Recursion can be used to generate both hierarchical and

non-hierarchical structures. However, infinite ‘flat’ sequences

without hierarchy can also be generated using simple non-

recursive processes. Parsing such ‘flat’ structures is achiev-

able by non-human animals (Fitch & Friederici, 2012; Nelson,

Conway, & Christiansen, 2001 for reviews), and it can be

difficult to distinguish, from behavioral data, whether recur-

sive or non-recursive processes were used. Because of these

empirical difficulties and because humans are especially so-

phisticated in their ability to handle hierarchies (as in lan-

guage, music and action sequencing), a core research focus

concerning recursion investigates how it enhances the pro-

cessing of hierarchical structures.

Hierarchies are tree-like organizations, where higher

levels incorporate multiple lower levels in structural repre-

sentations (Fitch &Martins, 2014). Tree-like organizations are

common in nature and in thehuman environment (Fig. 1), and

having the cognitive resources available to represent them

can enable multiple useful behaviors. For instance, an indi-

vidual able to represent the hierarchical structure of a social

group will have obvious generalization advantages over an

individual unable to represent the same group as hierar-

chically organized. In the same vein, an individual able to

represent appropriate hierarchies as recursive (Fig. 2) will

have advantages over individuals unable to project recursive

structures to new hierarchical levels (Martins, Mur�si�c, Oh, &

Fitch, 2015; Martins, 2012). In particular, being able to repre-

sent the similarity between different levels of a hierarchy

(hierarchical self-similarity) allows the use of this represen-

tation to extend the hierarchy to further levels beyond the

given (Martins, 2012). In other words, representing hierarchi-

cal self-similarity affords the ability to build hierarchies of

unlimited depth. Even if the depth is limited by performance

and memory constraints, this kind of flexible representation

would still be advantageous when parsing complex hierar-

chieswith cross-level similarities such as in visual perception,

music, language, theory of mind, complex action, mathe-

matics and architecture (Eglash, 1997, 1998; Eisenberg, 2008;

Friederici, Bahlmann, Friedrich, & Makuuchi, 2011; Friedrich

& Friederici, 2009; Jackendoff & Lerdahl, 2006; Janszky,
Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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Mertens, Janszky, Ebner, & Woermann, 2006; Martins, 2012;

Miller, 2009; Pinker & Jackendoff, 2005, Fig. 2).

Evidently, not all hierarchies exhibit this kind of self-

similar structure, and humans use both recursive and non-

recursive representations to generate and parse hierarchies.

The interesting question is not whether humans always use

recursive representations, but whether these are available to

our cognitive apparatus, and how they are instantiated.

Crucially, there is no inconsistency between the view that

humans are sensitive to recursive structures, but can also

process non-recursive structures, i.e., that some cognition is

recursive and some cognition not. The core of the paradigm

that we use in this experiment is the comparison between

recursive and non-recursive representations of the same

fractal stimuli (Martins, Fischmeister, et al., 2014). Thus, both

our framework and our experiment are compatible with the

view that humans are sensitive to both recursive and non-

recursive rules.

It is important to note and forestall a potential formal

criticism of our approach here: that mathematical proofs

concerning recursionmake crucial use of infinite sets, but our

conceptual and empirical framework makes no mention of

infinity. This is because one can never, in reality, observe

infinite sets, or expect humans to produce infinite numbers of

sentences. Our central goal in this research program is to

devise empirical tests for recursive abilities in different

cognitive domains, and to understand the neural bases of

such abilities. To accomplish this, we perforce rely on

behavioral output which indicates one of the core properties

of recursion: self-embedding. A mathematician might

complain that, even by showing multiple levels of self-

embedding, we have not “proven” recursion, because we

cannot show that such embedding could go on forever. But

this is equally true of ANY psychological evaluation: if we test

a subject on addition and they correctly add together 100 pairs

of random integers, we conclude that they can add integers e

even if they haven't demonstrated an ability to add all possible

integers. We see our focus on an empirically-evaluated ability

to correctly process self-embedded structures as analogous,

and interpret our results as solid evidence for recursive abili-

ties; even though we do not test whether (or claim that) our

participants can process infinite-depth structures. Any defi-

nition of recursionwhich relies on infinity as its sine qua non is,

by definition, empirically untestable. A similar approach has

been used by other authors (e.g., Moro, 2015 for a review).

Recursion, understood as a cognitive ability useful for the

generation of complex hierarchies, was first thought to be

language domain-specific (Hauser et al., 2002), andmost of the

available theoretical and empirical work has focused on this

domain. However, recent research has shown that both

human adults and children are able to represent hierarchies

using recursion in the visuo-spatial domain (Martins, Laaha,

Freiberger, Choi, & Fitch, 2014). This capacity is independent

of verbal resources (Martins et al., 2015) and does not recruit

classical perisylvian language areas in the brain (Martins,

Fischmeister, et al., 2014).

The independence of visual recursion from verbal re-

sources and language brain areas suggests that the instan-

tiation of recursion in vision partially depends on different

cognitive and neural resources than in language. For
arity and recursion as default modes in human cognition, Cortex
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Fig. 1 e Examples of linguistic (A), social (B) and action sequencing (C) hierarchies.
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instance, some aspects of language recursion, such as serial

order and phonological constraints do not apply to the

visuo-spatial domain. However, these specific constraints

might be either part of the core capacity of language
Fig. 2 e Examples of structures that can be effi

Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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recursion per se or part of the interfaces between recursion

and other systems (e.g., phonological), which are necessary

for the externalization of language (Hauser et al., 2002).

These leaves open the question of (1) whether visual and
ciently represented using recursive rules.

arity and recursion as default modes in human cognition, Cortex
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language recursion share any resources, and (2) the extent

of this overlap.

As we will discuss below, there are some analogies be-

tween language and visual recursion, in what concerns the

abstraction of the representations and the processing advan-

tages that they afford, for example in parsing fine information

embedded within hierarchical structures (Martins,

Fischmeister, et al., 2014; Martins, Laaha, et al., 2014; Roeper,

2011). However, this capacity in different domains might be

instantiated by completely segregated cognitive and neural

resources. Instead, these analogies might result from general

principles of computational efficiency. Therefore, it remains

an open empirical question (which we will not address here)

whether there is a supra-modal “recursion network”, or

whether each domain supports its own domain-specific

‘recursion module’ (see Tettamanti and Weniger (2006) for a

similar discussion).

In this manuscript, we aim at investigating the neural

mechanisms involved in the representation of visuo-spatial

hierarchies using recursive principles, in comparison with

the representation of the same hierarchies using non-

recursive rules. In particular, we want to investigate

whether the representation of visual recursion specifically

correlates with the Default Mode Network (DMN), a brain

system known to be involved in the processing of internal

information.

In the current literature investigating recursion empiri-

cally, in language and other domains, a particular pair of

prerequisites seems to be assumed (Fitch, 2010; Hornstein &

Nunes, 2008; Martins, 2012; Zaccarella, Meyer, Makuuchi, &

Friederici, 2015). The first is the existence of a computational

process able to combine elements and form a new dominant

supra-ordinate element, for example, the combination of

[student]NP and [committee]NP to form [[student]NP commit-

tee]NP. The second prerequisite is the particular kind of labels,

categories or roles, that are attributed to both the dominant

and subordinate elements (in this example, both simple and

compound nouns are labeled as Noun Phrases or NP). If both

dominant and subordinate elements are represented as
Fig. 3 e Distinction between generation rules: (A) Non-recursive

elements to pre-existing levels e and (B) recursive hierarchies

Fischmeister, et al., 2014; Martins, Laaha, et al., 2014).

Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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having similar categories or labels (Fig. 3B), then they share

affordances regarding how they can be further combined to

form new supra-ordinate elements. These shared combina-

torial affordances, provided when the same particular cate-

gories are used to represent elements in different hierarchical

levels, are the key to hierarchical self-similarity and to (po-

tential) infinite hierarchical depth.

While some groups have been focusing on the kind of

combinatorial processes involved in building recursive hier-

archies (Friederici, 2011; Petersson & Hagoort, 2012; for re-

views), here we focus on the ability to attribute similar labels

to elements belonging to different hierarchical levels. This

approach is implied in many theoretical accounts of language

processing (e.g., Cognitive Grammar (Landauer et al., 1997),

Construction Grammar (Croft, 2001), or Parallel Architecture

(Jackendoff, 2002)) in which words and syntactic rules are

understood as different variants of schemas, in that they are

“pieces of stored structure” in the long-term memory

(Jackendoff, 2015). What makes a schema rule-like is that

some of its structure consists of variables of a certain cate-

gory, “such as V [verb] and NP [noun phrase] in a VP [verb

phrase] schema” (Jackendoff, 2015). This approach, being

grounded in conceptual semantics (Jackendoff, 1983), can be

easily extended to several domains of cognition, such as

spatial and social cognition (Jackendoff, 1987, 2007; Landau &

Jackendoff, 1993), and provides an interesting perspective on

the interface between the conceptual structures of different

domains. For instance, Pulvermüller and Fadiga (2010) have

analyzed how sensory-motor and linguistic schemas might

share some of their underlying structure, both in semantics

and grammar. Crucially, such conceptual structures are

probably stored in the semantic conceptual system, which

processes not only “semantics” in a linguistic sense, but

constitutes a broader repository of categories and schemas,

including concrete concepts such as “dog” (Pulvermüller &

Fadiga, 2010) but also more abstract ones, such as animal

NP, linguistic thematic roles (Zaccarella et al., 2015), or even

schematic rules such as [[NP] NP]. This focus on the concep-

tual and semantic system as the potential locus of shared
processes generating hierarchies e which simply add

e which generate new levels (adapted from Martins,
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resources between language and the visuo-spatial domains is

supported by the recent discovery of hexagon grid-like neural

patterns encoding both conceptual and spatial information

within the DMN (Constantinescu et al., 2016). Again, these

similarities might be caused by either supra-modal resources

or by common principles of computational efficiency. In this

manuscript, we will focus on the empirical relationship be-

tween visuo-spatial recursion and the DMN.

In sum, understood as the capability to process hierarchi-

cal self-similarity, recursion allows the generation of multiple

hierarchical levels by using simple combinatorial rules and

self-similarity schemas (Fig. 3). Because structures with sim-

ilarities across hierarchical levels occur in many cognitive

domains (see above) the cognitive ability to represent hierar-

chical structures as generated recursively may increase the

efficiency of hierarchical processing. Even if different combi-

natorial processes and neural mechanisms underlie the

instantiation of recursion in different domains (with the

pathways of language processes being particular well-known

(see Berwick, Friederici, Chomsky, & Bolhuis, 2013; Catani,

Jones, & Ffytche, 2005; Friederici, Bahlmann, Heim,

Schubotz, & Anwander, 2006 for reviews), these processes

would still require the generation and recruitment of abstract

categories and schemas that represent the similar combina-

torial affordances of elements across hierarchical levels. In

accordance with this idea, hierarchical processing in different

domains seems to require access to areas within the temporal

cortex which are involved in semantic and categorical pro-

cessing. This is true for language (Ding, Melloni, Zhang, Tian,

& Poeppel, 2016; Pallier, Devauchelle, & Dehaene, 2011;

Zaccarella et al., 2015), music (Koelsch & Siebel, 2005;

Koelsch, 2006), complex arithmetic operations (Andres,

Michaux, & Pesenti, 2012; Delazer et al., 2003; Friedrich &

Friederici, 2009), visual-spatial processing (Martins,

Fischmeister, et al., 2014; Martins, Laaha, et al., 2014), and

applies to more abstract auditory patterns, both in humans

and non-human primates (Wang, Uhrig, Jarraya, & Dehaene,

2015).

The current study is based on the observation that hier-

archical structures can be generated using different rules or

principles. Of particular interest is the distinction between

recursive rules e defined by a single rule characterizing

several hierarchical levels e and non-recursive iterative

principles e in which each hierarchical level is characterized

by its own idiosyncratic rules, different from those for the

other levels (Martins, 2012, Fig. 3). Since recursion allows the

representation of multiple levels by a single rule, this reduces

the amount of information necessary to represent hierarchies,

in comparison with iterative representations of similar

structures. This theoretical advantage of recursion (Koike &

Yoshihara, 1993; Martins, 2012) predicts that representing hi-

erarchies as non-recursively generated should be more

cognitively demanding and thus less efficient. Recent empir-

ical work confirmed this theoretical prediction; for instance,

in the processing of visuo-spatial hierarchies, non-recursive

representations were found to recruit specific visuo-spatial

working memory resources to a greater extent than did

recursive representations (Martins, Fischmeister, et al., 2014;

Martins, Martins, & Fitch, 2015). Interestingly, although the

ability to represent visual structure as recursive is harder to
Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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acquire, once available, it appears to facilitate some aspects of

hierarchical processing (Martins, Fischmeister, et al., 2014;

Martins, Laaha, et al., 2014). Crucially, this also suggests that

different cognitive systems may be used to represent similar

hierarchical structures, and that recursive representations

may depend more on rules operating over abstract categories

that first need to be acquired and internalized (in long-term

memory) before they can be successfully used. In contrast,

the representation of hierarchies using non-recursive itera-

tive principles seems to dependmore on general visuo-spatial

processing abilities, and less on internal representations.

Given that using internalized recursive rules based on ab-

stract categories may reduce the information load necessary

to represent hierarchical structures, we hypothesized that the

DMN would be of particular importance to instantiate these

rules. The DMN, a ‘task-negative’ network, is typically asso-

ciated with self-referential or internally focused information

processing (Raichle et al., 2001). The core areas of the DMN are

anti-correlated with the activation of the Fronto-Parietal

Control Network (FPCN), a ‘task-positive’ network which

supports cognitive control and allocation of resources to

externalized information processing (Fox et al., 2005; Power &

Petersen, 2013; Vincent, Kahn, Snyder, Raichle, & Buckner,

2008). The DMN has also been shown to be closely related

with categorical processing as well as the retrieval of abstract

categories (Binder, Desai, Graves,& Conant, 2009; Humphreys,

Hoffman, Visser, Binney, & Lambon Ralph, 2015). Further-

more, the DMN has been shown to contain gridlike structured

patterns representing conceptual and spatial information

(Constantinescu et al., 2016). However, this relationshipmight

be specific to certain specific areas within the DMN (e.g.,

anterior temporal lobe) and dependent on the kind of stimuli

used (Humphreys et al., 2015). Because recursively generated

hierarchies require access to more abstract categories (Fig. 3)

which synthesize the features of several hierarchical relations

in a single rule, we hypothesized that this might be achieved

via formation and retrieval of schemas that operate over

abstract elements (Jackendoff, 2003). Again, the usage of

such internalized information would reduce the reliance on

domain-specific bottom-up cognitive resources. These theo-

retical predictions are consistent with previously published

behavioral data showing that recursion in vision is less

correlated with visuo-spatial memory and more correlated

with domain-general hierarchical capacities (Tower of

Hanoi task) (Martins, Fischmeister, et al., 2014; Martins et al.,

2015).

A recent neuroimaging study also suggested that, in the

representation of recursion, the DMNeFPCN balance may

indeed be specifically biased towards DMN. Martins,

Fischmeister, et al. (2014) investigated brain activation dif-

ferences between recursive and iterative (non-recursive) hi-

erarchical representations during processing of self-similar

visual structures. They found that the representation of

recursive generating principles differed from non-recursive

representations in various brain areas commonly associated

with the integration of spatial and categorical information and

semantic processing. Although not discussed by the authors,

the same brain areas can be seen as part of the DMN and the

FPCNwhen seen from the perspective of resting-state activity.

These components of the DMN are thus more active during
arity and recursion as default modes in human cognition, Cortex
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recursive cognition and the FPCN is more engaged with non-

recursive cognition.

Given this previous observation, we aimed here to extend

this previous analysis by adding resting-state measurements

and additional data analyses to investigate this partial segre-

gation of recursive and non-recursive representation rules in

the visual domain at the functional network level. To our

knowledge, this is one of the first attempts to demonstrate

that the DMN and FPCN can be used to characterize different

cognitive tasks regarding their requirements for processing

‘external’ (bottom-up) and ‘internal’ (top-down) information.

The goal was to investigate which of these networks support

specific aspects of hierarchical cognition. Since the under-

standing of recursion allows the processing of hierarchical

structures via reference to a single internalized rule (abstract

visual schema) and is thus less stimulus-driven, we hypoth-

esize that the DMN may be specifically important for the

processing of hierarchies when these are represented as

containing cross-level similarity, i.e., when these are repre-

sented as recursive. Because of the interesting cross-domain

analogies reviewed above, we hope that this study will stim-

ulate replications in different domains. However, it is impor-

tant to stress that the research presented here pertains only to

the representation of visuo-spatial structures and its rela-

tionship with the DMN.
2. Materials and methods

2.1. Participants

Thirty-five healthy participants (19 males and 16 females, age

range 20e32) were included in this study. Participants were
Fig. 4 e Representative examples of used items: Left the first thre

right the correct fourth iteration and a possible foil structure us

Recursion Task, (B) Embedded Iteration Task and (C) Positional

the target stimuli, i.e., the correct fourth iteration, are identical

(B) differentiate between the two tasks.

Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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recruited online, were right-handed native German speakers,

mostly university students, and had no history of medical,

neurological or psychiatric disease. Participants were paid 30

Euros for their participation. Note that these participants

constitute a subgroup of those used in a recent distinct anal-

ysis (Martins, Fischmeister, et al., 2014; Martins, Laaha, et al.,

2014); five participants from the original study were excluded

since for various reasons no resting-state task data were

collected. All subjects gave informed written consent prior to

participation in the study, which was approved by the

appropriate ethics committee of the Medical University of

Vienna.
2.2. Hierarchical structures task

The task used in this functional Magnetic Resonance Imaging

(fMRI) experiment has been described in detail elsewhere (cf.

Martins & Fitch, 2015; Martins, Laaha, et al., 2014) and con-

sisted of fMRI compatible adaptations of the Visual Recursion

Task (VRT) and Embedded Iteration Task (EIT) (Martins, 2012).

Both tasks are forced-choice procedures using identical

target stimuli (see Fig. 4A and B iteration four). In the Visual

Recursion Task (VRT, cf. Fig. 4A), self-similar hierarchical

structures are generated via a recursive procedure, with each

step of the procedure explicitly shown in a sequence of im-

ages. Generation of this sequence is based on simple genera-

tive recursive embedding rules, like “Add three As underneath

each A” as shown in Fig. 3B, which are applied to plain geo-

metric shapes. For each rule-shape combination four itera-

tions were generated plus one foil structure corresponding to

an “incorrect” fourth iteration. In the non-recursive EIT the

same end targets are generated, but via the iterative embed-

ding of elements within a fixed hierarchical level, again
e iterations, used for the rule acquisition phase are shown,

ed for the application phase, are presented. (A) Visual

Similarity Visual items used for the control task. Note that

and only the generating rule recursive (A) or non-recursive
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explicitly displayed as a sequence of images. An example for

such an iterative embedding can be found in Fig. 3A and

implemented in Fig. 4B. Again four iterations using iterative

embedding rules were generated plus one foil structure. Foil

structures for both tasks were created using different gener-

ation principles to prevent participants from applying simple

heuristic comparison strategies.

Memory demands were balanced across tasks by requiring

only a single rule (one recursive rule or one non-recursive rule)

to progress from image to image in the sequence (see Figs. 3

and 4A and B). In addition, a positional similarity problem

was introduced as a control task, which requires a simple

comparison of hierarchical structures without any rule-based

reasoning. This control task was introduced to account for

basic visual processing effects, and any non-rule based

cognitive effort (Fig. 4C). This setup allows a direct comparison

of recursive cognition with non-recursive cognition while

processing hierarchies. Crucially, these comparisons are not

biased by simple perceptual strategies based on visual

complexity, entropy or spatial frequencies since these are

implausible to explain VRT performance (Martins et al., 2015).

Each trial consisted of two phases. First, in the rule

acquisition phase, the first three iterations generating a visual

hierarchy, or three randomly selected hierarchical images in

the control task, were presented for a fixed duration of 3 sec.

This phase was followed by a rule application phase in which

two additional images were simultaneously presented in the

bottom half of the screen, one corresponding to the correct

fourth iteration and the other to a foil stimuluswhich failed to

continue the process shown in the previous image sequence

(see Fig. 5). These images were displayed for a maximum of

6 sec or until subjects responded. Participants were asked to
Fig. 5 e The experimental paradigm: Each trial started with a le

acquisition phase, presenting the first three iterations for 3 sec

presenting the correct fourth iteration or a foil stimulus. Here a r

from Martins, Fischmeister, et al., 2014; Martins, Laaha, et al., 2

Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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choose the image they that correctly continued the sequence

(according to the iterative or recursive rule). In the control

task, the correct image was identical to one of the three pre-

viously presented images. Before the rule acquisition phase, a

single letter indicated the forthcoming task category (recur-

sive, non-recursive or control task). The subsequent rule

acquisition and rule application phases were separated by a

cross-hair that was presented for a variable duration between

1000 and 3000 msec. Prior to the experiment, participants

practiced with one or two blocks of the experimental tasks

(with different stimuli than in the MR). The functional data

acquisition consisted of four sessions, with each session

consisting of 14 recursive stimuli, 14 iterative stimuli, and

eight similarity (control) items. In order to prevent possible

sequence effects showing learning or carry-over effects, ses-

sions were presented in random order.

To familiarize everyone with the experiment and the tasks

participants were invited to a first experimental session one

week before the fMRI acquisition. Following instruction about

the generation of hierarchies and the rules involved in VRT

and EIT, participants performed a training session using

different stimuli than those applied later inside the scanner.

2.3. Resting state

For the task-free resting-state acquisitions, participants were

presented with a black screen for about 7 min and instructed

to relax with eyes opened, lay still but not fall asleep and to

not think of anything in particular (Kollndorfer, Fischmeister,

Kasprian, Prayer, & Sch€opf, 2013). Both monitoring during the

acquisition and post experimental interviews confirmed that

subjects stayed awake with open eyes throughout the whole
tter indicating the stimulus category followed by the rule

. This phase was followed by a rule application phase

ecursive task is shown. See text for further details (adapted

014).
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session. Measurement of the resting-state condition was

conducted between session two and three of the cognitive

tasks for all subjects. This way, differences in attentional

levels throughout the resting-state were controlled for.

2.4. Image acquisition and preprocessing

Data acquisition was performed on a 3-Tesla TIM Trio system

(Siemens, Erlangen, Germany) using a 32 channel Siemens

head coil. Functional magnetic resonance images (fMRI) were

acquired using an optimized 2D single-shot echo planar im-

aging (EPI) sequence involving EPI distortion correction via PSF

mapping (Zaitsev, Hennig,& Speck, 2004). 350 EPI volumes per

session were acquired with a square FOV of 220 mm, an in-

plane matrix size of 128 � 128, with 36 slices aligned parallel

to the AC-PC plane with 2.7 mm thickness (i.e.,

2.3 mm � 2.3 mm � 2.7 mm voxel size) and 20% gap, a repe-

tition time (TR) of 2000msec, echo time (TE) 32msec, and a flip

angle of 73�. In addition 200 EPI volumes corresponding to

6 min 40 sec of resting-state were acquired using the same

parameters as for the task-based images. For anatomical

registration, high-resolution T1-weighted MR images were

acquired using a 3D MPRAGE sequence (TE ¼ 3.02 msec,

TR¼ 2190msec, inversion time [TI]¼ 1300msec)with amatrix

size of 250 � 250 � 256, with isometric voxels with a nominal

side length of .9 mm, flip angle of 9� and GRAPPA acceleration

factor 2.

All acquired data were analyzed using SPM 8 (http://www.

fil.ion.ucl.ac.uk/spm/), the CONN functional connectivity

toolbox version 14.i (Whitfield-Gabrieli & Nieto-Castanon,

2012) and in-house developed MATLAB (The Mathworks,

Natick, MA, USA) scripts. Image preprocessing involved slice

time correction to themiddle slice and realignment to account

for motion. Corrected data were then spatially normalized

using New Segment (SPM manual, FIL Group) and finally

smoothed using an 8 mm full-width-at-half-maximum

Gaussian filter (Fischmeister et al., 2013).

2.5. Functional connectivity analysis

Seed based functional connectivity analysis has been

shown to require additional preprocessing steps to prune

the single voxel BOLD signal time-series from temporal

confounds like residual subject motion and physiological

artifacts (Power, Barnes, Snyder, Schlaggar, & Petersen,

2012; Van Dijk et al., 2010). These temporal confounding

signals were calculated from the motion realignment pa-

rameters and their Volterra expansions, session specific

block regressors, and temporal BOLD signals with their

derivatives calculated from white matter and CSF areas

using the aCompCor method (Behzadi, Restom, Liau, & Liu,

2007). Residual BOLD time-series were then obtained by

regressing each of the temporal confounds from the single

voxel BOLD signal, performed separately for task data and

resting-state data.

To avoid local task activation related biases in connec-

tivity estimates, due to cross-task activations or across-trial

mean changes, task-related data were additionally pre-

processed using a task regression step similar to Fair et al.

(2007). This way, task specific functional connectivity
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estimates are not confounded by e.g., simple task-driven co-

activations between neuronal areas, and thus are not purely

driven by a common main task effect. Data for this regres-

sion step were obtained from a separate functional activa-

tion analysis similar to Martins, Fischmeister, et al. (2014)

and Martins, Laaha, et al. (2014) and then added as

confound e again using aCompCor (Behzadi et al., 2007).

Unlike in Martins, Fischmeister, et al. (2014) and Martins,

Laaha, et al. (2014), the complete time period comprising

the rule acquisition and the rule application phases was

modelled as a whole for this study. This time window (about

9 sec due to the variable nature of subjects' responses) rep-
resents the critical cognitive modes (recursive or non-

recursive cognition) and is sufficient to generate represen-

tative connectivity data. Since subjects' differences in

response time are reflected in the model, differences in re-

action time are accounted for.

Contrary to standard resting-state analysis only a high-

pass filter (<.001 Hz excluded) but no low-pass temporal fil-

ter was applied since a low-pass filter would have also

removed possible task-related higher frequency signals.

These data were then used to estimate resting state net-

works (RSNs) and task-based networks using a seed-to-voxel

approach. Definition of seed regions was based on recent

publications defining a representative parcellation of the

human brain: resting-state functional connectivity parcel-

lation (Cohen et al., 2008) and task meta-analysis (Power

et al., 2011). This parcellation results in 264 representative

brain regions which can be pooled into several highly

correlated communities. In a recent consensus analysis

these communities could be assigned to well-known brain

networks, like task-relevant control networks, e.g., the FPCN,

or the DMN (Cole et al., 2013; Power & Petersen, 2013). These

assignments were used to generate two summary subsets,

one representing the DMN as task negative and the other

representing the FPCN as a task positive network (see Table 1

for details of the selected locations). For each of these DMN/

FPCN summary sets an average signal time course was

extracted for each task and the resting state condition. These

average signal time courses represented the 8 seed time

courses used as input for a seed-to-voxel functional con-

nectivity analysis: DMN-Rest input, FPCN-Rest input, DMN-

Recursive input, FPCN-Recursive input, DMN-Non-

Recursive input, FPCN-Non-Recursive input, DMN-Control

input, FPCN-Control input. These 8 inputs were used for a

Pearson correlation between the seed time courses and all

brain voxels. The resulting DMN related and FPCN related

networks were finally converted using Fisher's Z-trans-

formation for second-level analysis. This procedure defines

eight different networks per subject: (1) DMN-Rest network:

brain areas the time courses of which are significantly

correlated with the DMN-Rest input during the resting state

condition, (2) DMN-Recursive network: brain areas corre-

lating with the DMN-Recursive input during the recursive

condition, (3) DMN-Non-Recursive network: brain areas

correlating with the DMN-Non-Recursive input during the

non-recursive condition, (4) DMN-Control network: brain

areas correlating with the DMN-Control input during the

control condition and (5)e(8) the corresponding FPCN net-

works, respectively. For every network the subject-specific
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Table 1 e Definition of DMN and FPCN seeds. Selected
subsets of the 264 brain regions analysis (Power et al.,
2011) used for the definition of the Default Mode Network
(DMN) and the Fronto-Parietal Control Network (FPCN).
Anatomical labels are based on probabilistic maps.

Network
system

Brain region MNI

x y z

Default

Mode

Network

Parietal Cortex

Left angular gyrus �44 �65 35

Left Angular Gyrus �39 �75 44

Left Middle Cingulate Cortex �2 �37 44

Left Precuneus �13 �40 1

�7 �55 27

�11 �56 16

�3 �49 13

Right Angular Gyrus 52 �59 36

47 �50 29

Right Posterior Cingulate Cortex 8 �48 31

Right Precuneus 6 �59 35

15 �63 26

11 �54 17

Temporal Cortex

Left Fusiform Gyrus �34 �38 �16

Left Medial Temporal Pole �44 12 �34

Left Parahippocampal Gyrus �26 �40 �8

Left Middle Temporal Gyrus �46 �61 21

�68 �23 �16

�56 �13 �10

�58 �30 �4

�68 �41 �5

�53 3 �27

�49 �42 1

Right Fusiform Gyrus 27 �37 �13

Right Middle Temporal Gyrus 65 �12 �19

65 �31 �9

52 �2 �16

52 7 �30

Frontal Cortex

Left Anterior Cingulate Cortex �7 51 �1

Left Anterior Cingulate Cortex �11 45 8

�3 42 16

Left Inferior Frontal Gyrus

p. Orbitalis

�46 31 �13

Left Mid Orbital Gyrus �3 44 �9

Left Middle Frontal Gyrus �35 20 51

Left Superior Frontal Gyrus �16 29 53

�10 55 39

�20 45 39

�20 64 19

Left Superior Medial Gyrus �10 39 52

�2 38 36

�8 48 23

Left Superior Orbital Gyrus �18 63 �9

Right Anterior Cingulate Cortex 12 36 20

Right Inferior Frontal

Gyrus p. Orbitalis

49 35 �12

Right Medial Temporal Pole 46 16 �30

Right Mid Orbital Gyrus 6 67 �4

8 42 �5

Right Rectal Gyrus 8 48 �15

Right Superior Frontal Gyrus 23 33 48

22 39 39

Table 1 e (continued )

Network
system

Brain region MNI

x y z

Right Superior Medial Gyrus 13 55 38

6 54 16

6 64 22

9 54 3

13 30 59

Occipital Cortex

Left Middle Occipital Gyrus �41 �75 26

Right Middle Occipital Gyrus 43 �72 28

Fronto-Parietal

Control

Network

Parietal Cortex

Left Angular Gyrus �42 �55 45

Left Inferior Parietal Lobule �53 �49 43

�28 �58 48

Right Inferior Parietal Lobule 44 �53 47

Temporal Cortex

Right Inferior Temporal Gyrus 58 �53 �14

Right SupraMarginal Gyrus 49 �42 45

Frontal Cortex

Left Inferior Frontal Gyrus �47 11 23

�42 25 30

Left Middle Frontal Gyrus �42 38 21

�34 55 4

�42 45 �2

Left Precentral Gyrus �44 2 46

�41 6 33

Left Superior Frontal Gyrus �23 11 64

�3 26 44

Right Angular Gyrus 37 �65 40

33 �53 44

Right Inferior Frontal Gyrus 47 10 33

48 25 27

Right Middle Frontal Gyrus 38 43 15

32 14 56

40 18 40

Right Middle Orbital Gyrus 34 54 �13

43 49 �2

Right Superior Orbital Gyrus 24 45 �15

c o r t e x x x x ( 2 0 1 6 ) 1e1 9 9
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connectivity estimates were entered into a repeated mea-

sures GLM with partitioned error variances for second-level

analysis. This one-way rm-GLM (with each condition repre-

senting one level) allows us to answer distinct connectivity-

related questions within a single statistical model. For

example differences between recursive and non-recursive

cognition corresponding to our primary hypothesis, can be

extracted and evaluated by directly contrasting these two

processes, without the need to factor out non-rule-based

reasoning (the control task). This is possible since all non-

rule-based processes are implicitly subtracted from all hier-

archical conditions by including the control-task in the

overall model. Additionally, one-sample t-tests were calcu-

lated to show resting and task-related positive and negative

functional connectivity within DMN and FPCN related areas.

All task-based comparisonsweremaskedwith the respective

resting-state connectivity maps. To this end individual DMN-

Rest and FPCN-Rest networks were submitted to single-

subject t-test, resulting interconnected brain areas were
arity and recursion as default modes in human cognition, Cortex
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thresholded and binarized and subsequently used as

neuroanatomical masks to restrict the analysis of task-

related networks to these specific rest networks. This al-

lows us to constrain obtained results from single compari-

sons to one single rest network without biasing results as a

direct comparison or an a-priori masking would have done.

All resulting statistical connectivity maps were thresholded

at voxel-wise p < .001 and a cluster extent of p < .05, FDR.
3. Results

3.1. Behavioral

During fMRI data collection all participants performed well

and no-one reported any difficulties with the itemmaterial or

the tasks. All participants showed high rates of correct re-

sponses across all three tasks. On average participants score

95.5% correct in VRT (SD ¼ 5), 91.4% correct in EIT (SD ¼ 7) and

96.1% correct in PSVT (SD ¼ 6). Nevertheless, there was a

significant difference in task performance between the three

(repeated-measures ANOVA: F 2,68 ¼ 15.322, p < .001,

Greenhouse-Geisser corrected) with participants scoring

significantly lower in EIT than in VRT (df ¼ 34, t ¼ �4.75,

p < .001) and PSVT (df ¼ 34, t ¼ �3.99, p < .001). Mean reaction

time for all tasks were comparable, yet there was a significant

difference in response time (repeated-measures ANOVA: F

2,68 ¼ 5.961, p¼ .01, Greenhouse-Geisser corrected). Unlike in

performance, VRT showed the lowest response time

(rt ¼ 2.34 sec, SD ¼ .57) and was significantly different from

EIT (rt ¼ 2.56 sec, SD ¼ .66; df¼ 34, t¼ 4.691, p < .001) and from

PSVT (rt ¼ 2.55 sec, SD ¼ .52; df ¼ 34, t ¼ 2.80, p < .008). These

differences in task-performance and response time were not

found during the pretesting which was conducted one week

before the MR session to familiarize everyone with the tasks

and conditions. Thus, observed minimal differences can
Fig. 6 e Resting-state architecture of the Default-Mode Network

subject population. Seed regions for this functional connectivity

a functional connectivity parcellations of the brain, cf. Cohen e

network activations, MNI coordinate and anatomical labels are
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likely be explained by the novel and challenging environment

while inside the scanner.
3.2. Resting state functional connectivity

For the DMN-Rest condition, DMN-related cortical regions

within the medial frontal cortex and the medial and inferior

lateral parietal cortex and the temporal cortex were delin-

eated as significantly connected. Within these, the medial

frontal cortex activation formed the largest connectivity

cluster, ranging from the mid orbital gyrus through medial

frontal regions to the superior medial gyrus. The two parietal

connectivity clusters cover medial and posterior cingulate

cortex and the precuneus, and the left and right angular gyrus

within the inferior parietal lobe. Other regions such as the

hippocampal formation previously associated with the DMN

were also significantly connected within our DMN-Rest

network (cf. Fig. 6A, Table 2). Overall the DMN-Rest network

comprised all DMN core areas as previously defined (ventral

and dorsal medial prefrontal cortex, posterior cingulate/ret-

rosplenial cortex, inferior parietal lobule, lateral temporal

cortex, and hippocampal formation; see Buckner, Andrews-

Hanna, & Schacter, 2008).

Correspondingly, the functional connectivity pattern for the

FPCNcomprised theFPCNcoreareasaspreviouslydefined (Cole

& Schneider, 2007; Vincent et al., 2008). Our connectivity clus-

ters included the middle frontal cortex extending laterally to-

ward the opercular and triangular part of the inferior frontal

gyrus, themedial superior frontalgyrusandtheanterior inferior

parietal lobe of both hemispheres. Next to these representative

FPCN areas other brain areas within the temporal cortex were

also found to be significantly correlated with this canonical

FPCN-Rest network (see Fig. 6B, Table 2 for a detailed listing).

For analysis of the task-based functional connectivity re-

sults, described in the next section, the significantly con-

nected areas of the DMN-Rest and FPCN-Rest networks were
(A) and the Frontal-Parietal Control Network (B) in our

analysis delineating the DMN and the FPCN were based on

t al. (2008) and Power et al. (2011) and Table 1. Resulting

given in Table 2.
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Table 2 e Resting state networks. Note that anatomical labelling is based on probabilistic maps using MNI coordinates. All
presented regions exceed a combined voxel-wise threshold of p < .001 and a cluster extent of p < .05, FDR.

Brain region MNI T-value

x y z

Default-Mode Network Medial Frontal Cluster

Right Mid Orbital Gyrus e right Area Fp1 4 68 �2 15.87

Left Superior Medial Gyrus e left Area Fp2 �2 56 10 15.42

Left Mid Orbital Gyrus e left Area Fp2 �8 58 �10 15.37

Left ACC �2 50 6 14.86

Left Mid Orbital Gyrus e left Area Fp2 �6 48 �8 14.69

Right Superior Medial Gyrus 8 52 20 13.4

Mid Parietal Cluster

Right PCC 6 �48 26 18.1

Right Precuneus 4 �56 28 17.55

Left Precuneus �8 �58 34 16.89

Left MCC �8 �44 34 15.66

Left and right Lateral Parietal Cluster

Left Angular Gyrus e left Area PGp e Inferior Parietal Lobe �42 �62 30 18.36

right Angular Gyrus e right Area PGp e Inferior Parietal Lobe 54 �60 28 15.92

Left and right Temporal Cluster

Left Middle Temporal Gyrus �52 �24 �10 14.48

Left Inferioright Temporal Gyrus �40 10 �34 11.84

Left Medial Temporal Pole �44 12 �32 11.26

Right Middle Temporal Gyrus 56 2 �30 15.89

Right Medial Temporal Pole 44 6 �32 12.37

Hippocampal Cluster

Right ParaHippocampal Gyrus e right Subiculum 26 �34 �12 9.96

Right ParaHippocampal Gyrus e right Hippocampus) 24 �16 �22 9.26

Occipital Cluster

Left Middle Occipital Gyrus e left hOc2 [V2] �20 �102 �6 6.75

Left Calcarine Gyrus e left hOC1 [V1] �10 �104 �4 6.6

Right Linual Gyrus e right hOC1 [V1] 20 �100 �10 8.15

Right Inferioright Occipital Gyrus e right hOc4v [V4(v)] 46 �86 �12 5.75

Right Superioright Occipital Gyrus e right hOc2 [V2] 22 �100 12 5.31

Right Middle Occipital Gyrus e right hOc2 [V2] 28 �100 8 5.06

Fronto-Parietal

Control Network

Right and Left Prefrontal Cluster

Right Inferior Frontal Gyrus p. Triangularis 46 28 26 17.76

Right Middle Frontal Gyrus 42 16 40 17.25

Right Middle Orbital Gyrus 36 54 �14 15.35

Right Inferior Frontal Gyrus p. Opercularis 48 18 28 15.06

Right Inferior Frontal Gyrus p. Orbitalis 44 44 �10 14.03

Left Inferior Frontal Gyrus p. Triangularis �44 34 20 16.74

Left Inferior Frontal Gyrus p. Opercularis �44 20 32 15.95

Left Middle Frontal Gyrus �28 12 52 14.35

Left Middle Orbital Gyrus �40 52 �10 9.77

Right and Left Inferior Parietal Cluster

Left Inferior Parietal Lobule e left Area hIP1 (IPS) �38 �56 46 20.28

Left Inferior Parietal Lobule e left Area hIP2 (IPS) �46 �46 42 17.87

Right SupraMarginal Gyrus e right Area hIP1 (IPS) 50 �42 44 19.72

Right Inferior Parietal Lobule e right Area hIP1 (IPS) 38 �54 44 16.96

Medial Frontal Cluster

Left Superior Medial Gyrus �2 30 44 16.73

Right Superior Medial Gyrus 5 23 50 11.31

Right and Left Temporal Cluster

Left Middle Temporal Gyrus �66 �42 �12 12.48

Left Inferior Temporal Gyrus �54 �58 �22 11.15

Right Middle Temporal Gyrus 66 �46 �6 11.93

Right Middle Temporal Gyrus 56 �42 �10 9.02

c o r t e x x x x ( 2 0 1 6 ) 1e1 9 11
binarized and used as neuroanatomical masks to restrict

further analysis to these specific networks.

3.3. Task-based functional connectivity

Analyzing task-related connectivity patterns (in recursive,

non-recursive and similarity tasks) for the default-mode and
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(2016), http://dx.doi.org/10.1016/j.cortex.2016.08.016
the Frontal-Parietal Control Network revealed stable and

reliable connectivity patterns. Interestingly, all three tasks

showed very similar patterns of connectivity with respect to

connectivity estimates within DMN and FPCN related areas

(Fig. 7). DMN-related cortical regions comprised all DMN core

areas like the ventral and dorsal medial prefrontal cortex,

posterior cingulate/retrosplenial cortex, inferior parietal
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lobule, lateral temporal cortex, and hippocampal formation

(Buckner et al., 2008). Task related increased connectivities

within the FPCN comprised clusters along the middle frontal

cortex extending laterally toward the inferior frontal gyrus,

the medial superior frontal gyrus and the anterior inferior

parietal lobe. Consistent with previous studies, we found

decreased functional connectivity during the execution of

tasks, compared to task-free periods, within DMN-related

areas e in particular within anterior and parietal regions e

and increased connectivity during tasks within FPCN-related

areas (Fox, Corbetta, Snyder, Vincent, & Raichle, 2006;

Vincent et al., 2008).

A direct comparison of the representation of recursive

versus non-recursive generating principles (of similar hierar-

chical structures) within the task-negative DMN network

showed increased connectivity during the representation of

recursion as compared to non-recursive representations

(Fig. 8, Table 3). Note that due to the nature of the one-way rm-

GLM this contrast directly compares the two rule-based pro-

cesses, since any non-rule-based reasoning processes are

implicitly factored out by including the control task in the

model.

Such an increase in connectivity was observed in parts

of the right precuneus and the DMN core areas medial

prefrontal cortex, inferior parietal lobule and lateral tem-

poral cortex (Buckner et al., 2008). Importantly, none of

the DMN areas showed a significant opposite behavior,

that is, no significant increases in connectivity were

observed when contrasting non-recursive with recursive

cognition. Furthermore, certain areas not typically asso-

ciated with DMN, within the occipital cortex, showed

an increased connectivity while representing recursive

hierarchical rules as compared to non-recursive rule

processing.

Comparing the two cognitive modes within FPCN-Rest

network areas revealed the opposite behavior. Here, con-

trasting recursive and non-recursive generating principles

yielded increased connectivity only for the representation of

non-recursive hierarchical rules. Clusters with increased

FPCN connectivity were found in core areas of the FPCN

(compare Vincent et al., 2008) within the lateral frontal, tem-

poral and parietal cortices (Fig. 5, Table 3). Interestingly, a non-

recursive> recursive FPCN connectivity was again observed in

parts of the precuneus, but in this case localized on the left

side. Similar to our observations within the DMN, the opposite

contrast, recursive > non-recursive processing within FPCN

did not yield any significant increase.
4. Discussion

Hierarchies with some degree of self-similarity are often

found in nature, identifiable by their attractive fractal struc-

ture. At a certain level of abstraction, we also find examples of
Fig. 7 e Task based connectivity results for the three tasks: Are

Network (shown in blue) andwithin the Fronto-Parietal Control N

non-rule based comparisions (C). Note that all three tasks show

DMN-related cortical regions the Fronto-Parietal Control Netwo
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these structures in cognitive domains like language, vision,

action and social processing (e.g., Corballis, 2011; Fitch et al.,

2005; Hauser et al., 2002; Martins, 2012; Miller, 2009). Recent

studies have shown that complex hierarchies can often be

efficiently represented as generated by recursive rules

(Martins, Fischmeister, et al., 2014; Martins, Laaha, et al.,

2014), and such rules, once acquired and understood, facili-

tate various aspects of hierarchical processing (Martins,

Fischmeister, et al., 2014; Martins, Laaha, et al., 2014). This

led to the hypothesis that different cognitive systems can be

used to represent hierarchical structures. On the one hand,

the representation of recursive principles might depend on

the retrieval of internalized rules and schemas that explain a

large portion of incoming sensorial data, hence reducing the

amount of external information necessary to maintain rep-

resentations in working memory. On the other hand, the

representation of hierarchies as generated non-recursively

might engage fundamental bottom-up visuo-spatial pro-

cesses and thus yield a more external focus, with higher

reliance on domain-specific working memory (Martins,

Fischmeister, et al., 2014; Martins, Laaha, et al., 2014; Rogers,

Avery, & Heckers, 2010). These hypotheses seem to be

consistent with both behavioral and neuroimaging findings

(Martins, Fischmeister, et al., 2014; Martins, Laaha, et al., 2014;

Martins et al., 2015).

Here we tested these hypotheses more directly, by con-

trasting neuronal activity during the processing of self-similar

hierarchies either using recursive rules or iterative, non-

recursive principles, and task-free resting-state data using

functional connectivity analyses. This way we aimed to link

task-evoked functional networks induced by the two cognitive

processes with the resting state architecture of the DMN and

the FPCN. Again, our assumption was that FPCN would signal

“externally-focused” bottom-up processing, andDMN internal

top-down processing, in which the representation of external

information would rely less on FPCN, and more on the

retrieval of internalized rules or schemas.

Functional connectivity analysis of task-related data

revealed stable and reliable connectivity patterns within DMN

and FPCN regions for every task. Furthermore, thewell-known

inverse relationship of DMN and FPCN while performing

cognitive tasks was reliably found. The comparison of recur-

sion versus non-recursive iteration revealed higher connec-

tivity values within DMN-related brain areas for the recursive

representation of self-similar hierarchies. Conversely, FPCN-

related areas showed higher connectivity patterns with non-

recursive representations (vs recursion) in the processing of

identical images. These results suggest that representation of

recursion is highly connected with DMN-related brain areas,

and thus recruits more internally generated information than

non-recursive representations. Non-recursive representa-

tions, on the other hand, seem to require FPCN-related areas

to a higher extent, compatible with our hypothesis of a

stronger domain-specific visuo-spatial processing.
as showing increased connectivity within Default Mode

etworkwhile processing recursions (A), hierarchies (B) and

ed very similar patterns of connectivity estimates within

rk.
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Fig. 8 e Task based functional connectivity differences: Anatomical areas with increased connectivity to the DMN inputs

during recursive processing (recursive > non-recursive processing) are shown in red. In blue anatomical areas yielding

increased connectivity to the FPCN inputs during non-recursive processing (non-recursive > recursive processing). Please

also compare Table 2 but note that (1) only surface based activities are visible and (2) that inverse contrasts within the two

networks, e.g., non-recursive > recursive processing within DMN, did not result in any significant difference.
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This conclusion is compatible with the steadily increasing

body of evidence suggesting that the human cortex is orga-

nized into two orthogonal and functionally distinct networks.

These two networks were chosen for investigation as they

represent a task-positive network e commonly associated

with cognition and task processing which on the whole is

externally oriented e and a task negative network (Fox et al.,

2006; Raichle, 2010).

The FPCN represents an important task-positive network

which plays a significant role in executive control of attention

and adaptive control processes, and flexibly couples with the

DMN or the dorsal attention network to support internally or

externally focused goal-directed cognition (Power, Cohen,

Nelson, & Wig, 2011; Spreng, Stevens, Chamberlain, Gilmore,

& Schacter, 2010; Vincent et al., 2008). Therefore, our obser-

vation of higher connectivity within the FPCN while encoding

non-recursive transformations within hierarchical structures

seem to indicate a higher demand for switching between in-

ternal and external resources. Consistent with our theoretical

assumptions and previous behavioral findings (Fitch &

Martins, 2014; Martins, 2012) the results presented here indi-

cate that transformations within a fixed hierarchical level

indeed represent amore externally focused process compared

to recursive processes.

The second network, termed the DMN (Raichle et al., 2001),

is internally oriented, deals with self-related processes

(Buckner et al., 2008; Vaidya & Gordon, 2013) and consists of

medial cortical regions within the frontal and parietal cortex

as well as of the inferior parietal lobe and temporal regions.

Some of these regions have also been implicated in the
Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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processing of semantic information (Binder et al., 2009) and

abstract categories (Kravitz, Saleem, Baker, Ungerleider, &

Mishkin, 2013). Singh and Fawcett (2008) were among the

first to investigate the relation of DMN deactivation and task

performance. Using a visual detection paradigm, they re-

ported a negative correlation between task-related and DMN

activations. By varying the factor ‘task difficulty’ and therefore

implicitly modulating external attention, they observed a

linear graded deactivation within DMN areas: the more

external attention required (lower motion coherence of the

presented stimuli) the more DMN was deactivated. This rela-

tionship between task-evoked activation, external focus, and

deactivation within the DMN has since then been shown

repeatedly (for a recent review see Anticevic et al., 2012) and

fits well to our data. However, while Singh and Fawcett (2008)

varied the level of internal information processing, our study

tried to trigger different cognitive processes involved in the

processing of the VRT and EIT. Crucially, we maximally con-

strained the item material for both hierarchical tasks with

respect to physical and cognitive properties so that the rep-

resentation of a single rule was sufficient to perform

adequately, but the nature of this rule varied between tasks

(Fitch & Martins, 2014; Martins, 2012; Martins et al., 2015).

Using this procedure we aimed to isolate effects involved in

the different cognitive processes necessary to instantiate the

representation of recursive versus non-recursive principles

for generating hierarchies. Therefore, the decreased DMN-

related deactivation found while processing hierarchical

structures in the VRT can be attributed to the cognitive pro-

cesses underlying the representation of recursive rules.
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Table 3 e Functional connectivity. Comparison ‘Recursive versus non-recursive representations’: anatomical areas with
increased connectivity to the DMN seed during recursive representations. Comparison ‘Non-recursive versus recursive
representations’: anatomical areas with increased connectivity to the FPCN seed during non-recursive representations.
Anatomical labelling is based on probabilistic maps using MNI coordinates. Note that only positive connectivity differences
exceeding a combined voxel-wise threshold of p < .001 and a cluster extent of p < .05, FDR are shown to not intermix task-
positive and task-negative networks.

Brain region MNI T-value

x y z

Recursive versus non-recursive

rule processing within

DMN related areas

Occipital Cluster

Left Inferior Occipital Gyrus e left hOc3v [V3v] �22 �98 �8 4.1

Left Calcarine Gyrus e left hOc3v [V3v] �16 �94 �6 3.87

Left Middle Occipital Gyrus e left hOc3v [V3v] �30 �94 4 3.65

Right Linual Gyrus e right hOc3v [V3v] 18 �90 �12 5.53

Right Inferior Occipital Gyrus e right hOc3v [V3v] 28 �86 �16 4.48

Right Inferior Occipital Gyrus e right hOc4v [V4(v)] 38 �84 �12 3.83

Frontal Cluster

Right Middle Frontal Gyrus 40 14 56 4.59

Right Superior Medial Gyrus 18 40 56 3.56

Right Superior Frontal Gyrus 26 38 54 3.26

Right Superior Frontal Gyrus e right Area Fp1 30 62 2 5.81

Right Middle Frontal Gyrus 28 52 6 4.36

Right Superior Medial Gyrus e right Area Fp1 8 72 10 4.01

Right Superior Frontal Gyrus e right Area Fp1 18 70 8 3.54

Mid Parietal Cluster

Right Precuneus 4 �52 42 3.87

Lateral Parietal Cluster

Right Inferior Parietal Lobule e right Area PFm (IPL) 58 �54 46 3.51

Right Inferior Parietal Lobule e right Area PGa (IPL) 50 �54 40 3.37

Left and Right Temporal Cluster

Left Middle Temporal Gyrus �50 �56 16 3.13

Right Middle Temporal Gyrus 38 �48 18 3.46

Right Angular Gyrus 42 �46 16 3.35

Non-recursive versus recursive

rule processing within FPCN

related areas

Frontal Cluster

Right Superior Orbital Gyrus 20 32 �16 3.96

Right Superior Medial Gyrus 6 20 44 3.92

Right Precentral Gyrus 46 8 34 3.81

Right Inferior Frontal Gyrus (p. Opercularis) 46 8 28 3.65

Right Middle Frontal Gyrus 48 14 44 3.33

Left Superior Orbital Gyrus �10 52 �22 2.68

Left Inferior Frontal Gyrus (p. Orbitalis) �50 34 �16 2.31

Left Superior Orbital Gyrus �14 48 �24 2.13

Medial Frontal Cluster

Left Superior Frontal Gyrus e left Area Fp1 �24 64 8 2.74

Lateral Parietal Cluster

Right SupraMarginal Gyruse right Area PFt (IPL) 52 �32 42 3.75

Right Superior Parietal Lobule e right Area 7A (SPL) 22 �70 56 3.42

Right SupraMarginal Gyrus e right Area 2 42 �34 40 3.37

Right Inferior Parietal Lobule e right Area hIP2 (IPS) 48 �38 48 2.76

Mid Parietal Cluster

Left Superior Parietal Lobule e left Area 7A (SPL) �16 �72 48 3.34

Left Superior Parietal Lobule �16 �66 48 2.95

Left Precuneus �26 �68 22 2.82

Occipital Cluster

Right Calcarine Gyrus e right hOC1 [V1] 20 �100 2 3.27

Right Linual Gyrus e right hOc3v [V3v] 18 �90 �10 2.58

Left Fusiform Gyrus e left hOc3v [V3v] �22 �84 �8 3.12

Left Middle Occipital Gyrus �24 �90 0 2.58

Left Middle Occipital Gyrus �36 �94 �2 2.54

Left Middle Occipital Gyrus e left hOc3v [V3v] �30 �96 8 2.47

Left and Right Temporal Cluster

Right Superior Temporal Gyrus 62 �28 2 2.11

Right Middle Temporal Gyrus 64 �42 �2 1.95

Right Inferior Temporal Gyrus 64 �22 �24 1.93

Left Middle Temporal Gyrus �66 �28 �10 2.95

Left Inferior Temporal Gyrus �56 �14 �32 2.37
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Recently, the homogeneous nature of the DMN has been

challenged, and initial evidence provided by Andrews-Hanna,

Reidler, Sepulcre, Poulin, and Buckner (2010) suggested the

existence of two subsystems, each subserving distinct inter-

nal mainly self-related cognitive functions: a medial temporal

and a dorsal medial frontal subsystem both highly correlated

with a midline core (posterior cingulate and anterior medial

prefrontal cortex). Interestingly, in our study differences be-

tween recursive and non-recursive hierarchical processing

were found within dorsal medial frontal and lateral temporal

cortical regions linked to the dorsal medial subsystem, and

within the core of the DMN comprising, among others, ventral

regions of the precuneus and the angular gyrus. In particular

the core region is thought to represent a functional hub for the

integration and transfer of information between the two

subsystems while the dorsal medial component is commonly

associated with social cognition and reflection upon self and

others, using stored conceptual knowledge (see Andrews-

Hanna, Smallwood, and Spreng (2014) for a detailed review).

Furthermore, the anterior temporal regions of the core are

critically involved in conceptual processing (Patterson, Nestor,

& Rogers, 2007) and in the storage of semantic and conceptual

knowledge (Binder & Desai, 2011). The angular gyrus is

connected to the anterior temporal cortex and other regions

of the DMN and seems to function as a cross-modal integra-

tion region combining internal and conceptual information

within a spatiotemporal context with perceptual sources

(Seghier & Price, 2012). This supports the hypotheses put for-

ward here that (1) the representation of recursive principles

generating hierarchies requires access to an internal mode of

information-processing, that (2) this access is mediated by

both the core and dorsal-medial subsystems of the DMN, and

that (3) the integration of these systems enacts the role of

internal rules in the processing of visuo-spatial hierarchical

information (Kravitz, Saleem, Baker, & Mishkin, 2011).

Using visual comparison paradigms, Rogers et al. (2010)

found similar results to those as reported here. In that

study, non-sequential visual stimuli were compared with

sequential stimuli, both previously learned and novel. They

found DMN-related areas to be strongly functionally con-

nected to the FPCN network while processing hierarchies as

opposed to simple stimulus pairs. Interestingly, the authors

could not find a memory effect induced by the learning ses-

sion preceding the functional data acquisition. Thus, they

suggest that the DMN maintains an internal model of hierar-

chical sequences used as reference - irrespective of whether

they are novel or learned. Based on this observation onemight

speculate that certain subsystems of the DMN are not just

necessary to maintain and process recursive hierarchies but

also represent a core component of an internal recursive

processing system.
5. Limitations

Despite these interesting findings one could argue that our

results are not due to recursion per se, but to simple perceptual

principles, simple heuristic strategies or differences in atten-

tion. While it is difficult to control for the mental processes

participants used in our paradigms, and during rest, we tried
Please cite this article in press as: Fischmeister, F. P., et al., Self-simil
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to lower the occurrence of these alternative strategies by

carefully instructing and training subjects before the experi-

ment, choosing different ‘foil item categories’ to block any

specific heuristic strategies, and finally by explicitly con-

trasting all tests against a pure similarity task condition.

Additionally, in particular the visual recursive task has been

shown to correlate with recursive planning tasks (Tower of

Hanoi), and simple perceptual strategies employing visual

complexity or entropy were shown not to explain VRT per-

formance (Martins et al., 2015). Finally, to ensure unbiased

hierarchical information-processing-related connectivity es-

timates, an additional regression step similar to Fair et al.

(2007) was employed to prune for common main task-

related activation and possible confounding effect.

Our conclusion that the understanding of recursive rules

generating hierarchies relies on internal representations

dependent on DMN regions is currently only valid for the

cognitive domain applied in this study, i.e., the visual domain.

However, we suspect that the decisive difference between

recursive and non-recursive representations (the reliance on

abstract categories and top-down internal representations)

might extend to other domains for which humans are able to

build recursive representations, e.g., music and spoken lan-

guage (Fitch & Martins, 2014). Future research will be neces-

sary to test the generality of this hypothesis.
6. Conclusion

Our results indicate that hierarchical information processing

via the understanding of recursive rules is supported by the

DMN. Thus the internal rule-based representation mediated

by the DMN helps humans to understand hierarchical struc-

tures in complex environments. This is likely caused by the

reduced load on external information processing during

recursive representations, due to the use of categories

dependent of internalized recursive schemas. This mode of

information processing is thus closer to the default mode of

human cognition.
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