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Abstract We describe a new method to explore recursive
cognition in the visual domain. We define recursion as the
ability to represent multiple hierarchical levels using the same
rule, entailing the ability to generate new levels beyond those
previously encountered. With this definition recursion can be
distinguished from general hierarchical embedding. To inves-
tigate this recursion/hierarchy distinction in the visual domain,
we developed two novel methods: The Visual Recursion Task
(VRT), in which an inferred rule is used to represent new
hierarchical levels, and the Embedded Iteration Task (EIT),
in which additional elements are added to an existing hierar-
chical level. We found that adult humans can represent recur-
sion in the visuo-spatial domain, and that this ability is distinct
from both general intelligence and the ability to represent
iterative processes embedded within hierarchical structures.
Compared with embedded iteration, visual recursion correlat-
ed positively with other recursive planning tasks (Tower of
Hanoi), but not with specific visuo-spatial resources (spatial
short-term memory and working memory). We conclude that

humans are able to use recursive representations to process
complex visuo-spatial hierarchies and that our visual recursion
task taps into specific cognitive resources. This method opens
exciting opportunities to explore the relationship between vi-
sual recursion and language.
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The capacity to understand and generate complex hierarchies is
one of the most fascinating features of human cognition. In
many domains, including language, music, problem-solving,
action-sequencing, and spatial navigation, humans organize
basic elements into higher-order groupings and structures
(Badre, 2008; Chomsky, 1957; Hauser, Chomsky, & Fitch,
2002; Nardini, Jones, Bedford, & Braddick, 2008;
Unterrainer & Owen, 2006; Wohlschlager, Gattis, &
Bekkering, 2003). This ability to encode the relationship be-
tween basic elements (words, people, etc.) and the broader
structures in which these are embedded (sentences, corpora-
tions, etc.), affords flexibility to human behavior. For example,
in action sequencing, and unlike pure serial associative behav-
ior, hierarchical representations allow the omission or modifi-
cation of certain steps, without impairing the overall goal.

Here, we define hierarchies as non-cyclical tree-like orga-
nizations, where higher levels incorporate multiple lower
levels in structural representations (Fitch & Martins, 2014),
i.e., in which elements are embedded within other elements.
This embedding can refer to the grouping of constituents with-
in a higher order set, such as the grouping of individuals with-
in a family (family = {ind1; ind2; ind3}), or it can refer to the
establishment of asymmetrical dominance-subordination rela-
tionships between constituents, such as in social hierarchies
(ind1 dominant over ind2, ind2 dominant over ind3, etc.).
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Within the context of hierarchical processing, recursion is
an interesting concept that has fascinated scholars in fields as
diverse as mathematics, computer science, linguistics, and vi-
sual arts. Recursion is interesting because it allows the gener-
ation of structures that are both simple and complex at the
same time. Recursive structures are complex because they
can contain infinite hierarchical levels, and yet simple because
this infinity can be achieved and represented using finite rules.

Recursion is a term that has been used to characterize the
process of embedding a constituent inside another constituent
of the same kind (Fitch, 2010; Hulst, 2010; Pinker &
Jackendoff, 2005). Recursive processes can generate hierar-
chical structures that display similar properties across different
levels of embedding. This feature, called self-similarity, is a
signature of recursive structures. An example of a recursive
linguistic structure is the compound noun “[[student] commit-
tee]”, where we find a noun phrase embedded inside another
noun phrase. In contrast, a sentence containing a noun and a
verb, such as “[[trees] grow]”, is hierarchical, but not recur-
sive, because a constituent of one type (noun) is nested within
a constituent of a different type (verb).

We can also find examples of recursive procedures gener-
ating visual hierarchies. For instance, fractals are structures
that display self-similarity (Mandelbrot, 1977), that is, they
appear similar when viewed at different scales (as in the fa-
mous Mandelbrot set). Fractals can be produced by simple
rules that generate complex hierarchical structures when ap-
plied iteratively to their own output (Fig. 1).

Recently, recursion has become an important topic in cog-
nitive science because the development of the human ability to
represent recursion has been considered an important step in
the evolution of language (Fitch, Hauser, & Chomsky, 2005;
Hauser et al., 2002). In addition, recursion has been proposed
to have evolved primarily within the linguistic domain, being
accessible to other modalities (e.g., visual domain) only
through language (Fitch et al., 2005; Hauser et al., 2002).1

Other authors have also proposed that recursion might have
evolved only in humans, and that recursive thinking is at the
core of human cognitive exceptionality (Corballis, 2014).
Testing these hypotheses has been difficult due to both theo-
retical and methodological limitations.

An empirically useful definition of recursion

Despite considerable agreement about the importance of re-
cursion, many different definitions of recursion are in use
(Chomsky, 2010; Corballis, 2007; Gentner, Fenn,
Margoliash, & Nusbaum, 2006; Hofstadter, 1980;

Kilpatrick, 1985; Odifreddi, 1999; Penrose, 1989) which has
hindered consistent interpretation of empirical results (Fitch,
2010). On the one hand, it has proven to be particularly diffi-
cult to establish clear distinctions between recursion and sim-
ilar processes such as hierarchical embedding and iteration
(Hulst, 2010). On the other hand, it has not been clear which
level of analysis (process, structure, or representation) is rele-
vant for empirical research (Lobina, 2011, 2014; Martins,
2012).

Regarding the first theoretical difficulty, here we adopt a
framework (Fitch, 2010; Martins, 2012) in which “iteration”
refers to the process of repeating an operation a certain num-
ber of times. An iterative process may or may not generate
hierarchical structures or create dependency relationships be-
tween different elements. For example, putting onemarble at a
time into a bag is an iterative process, but neither hierarchical
nor recursive. In contrast, “hierarchical” structures always in-
volve the embedding of elements within other elements. If the
hierarchical embedding occurs between constituents of the
same category (e.g., such as a noun phrase inside a noun
phrase) we classify it as recursive, otherwise as non-recursive.
Iteration, hierarchical embedding, and recursion are not mutu-
ally exclusive processes: in fact, recursion typically involves
both hierarchy and iteration. Nevertheless, it is possible to
segregate the cognitive abilities necessary to represent the
kind of information that each of these processes encode
(Fig. 2).

The second theoretical difficulty is to define the level of
analysis useful for empirical enquiries. Recursion can be de-
fined either as a “procedure that calls itself” or as the property
of “constituents that contain constituents of the same kind”
(Fitch, 2010; Pinker & Jackendoff, 2005). Frequently, we find
an isomorphism between procedure and structure, i.e., recur-
sive processes often generate recursive structures. However,
this isomorphism does not always occur (Lobina, 2011; Luuk
& Luuk, 2010; Martins, 2012). In this manuscript we explic-
itly focus on a third level of analysis, which is the level of
representation. We focus on detecting what kind of informa-
tion individuals can represent, rather than on how this infor-
mation is implemented algorithmically.

Encoding iteration requires the ability to represent the rep-
etition of a certain process, for instance the repeated addition
of elements to a structure. Encoding hierarchical embedding
requires the ability to represent dependency or grouping rela-
tionships between constituents at multiple levels. Encoding
recursive embedding requires the ability to represent similar-
ities across hierarchical levels (self-similarity). Specifically,
that the way contiguous levels relate to each other within a
hierarchy is similar across different levels. Recursion enables
the generation of new hierarchical levels beyond those previ-
ously experienced, maintaining consistency with existing
levels at a higher level of abstraction. It is important to retain
the notion that a certain hierarchy can be represented both

1 It has been pointed out that these hypotheses are not well formulated. In-
depth discussion can be found in Fitch et al. (2005), Jackendoff and
Pinker (2005), and Pinker and Jackendoff (2005).
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recursively and non-recursively. For instance, in Fig. 3, a cer-
tain visual hierarchy can be generated using either process (a)
or process (b). The secondmode of representation is recursive,
and allows the generation of an infinite number of new hier-
archical levels, using one simple rule. This capacity to gener-
alize common hierarchical principles across levels and to gen-
erate new levels beyond the given is a specific behavioral
signature of recursive cognition.

Finally, although there is evidence suggesting humans can
represent recursion in language, the question of whether we can
represent this concept in other domains (for example, in vision)
has been not been addressed empirically. This omission has been
caused by a lack of methods to test for the ability to represent
recursion in non-linguistic domains. Here we solve this method-
ological limitation by presenting a novel method that can be used
to test recursion in vision. In particular, in this paper we evaluate
our novel method in a variety of conditions to ensure that it taps
into a specific cognitive construct (recursion) which is not
completely explained by other, more general processes (such as
intelligence, iterative reasoning, working memory, entropy anal-
ysis, and low-frequency spatial heuristics).

Hierarchical processing in the visual domain

The processing of hierarchies in the visual domain has been
explored in the context of attention to local versus global
information (Fink et al., 1996; Fitch, 2010). In particular, it
is interesting that while the proper processing of hierarchies
involves the integration of global and local information, there

are several conditions in which individuals are biased to focus
on the local information only. For instance, while attending to
a big square composed of small circles, young children have a
tendency to identify the small circles faster and easier than
they can identify the big square (Harrison & Stiles, 2009;
Poirel, Mellet, Houdé, & Pineau, 2008). This local-oriented
strategy to process hierarchical stimuli is similar to that seen in
non-human primates (Fagot & Tomonaga, 1999; Spinozzi, De
Lillo, & Truppa, 2003). Conversely, in human adults a global
bias develops, in which global aspects of hierarchical struc-
tures are processed first, and where the contents of global
information interfere with the processing of local information
(Bouvet, Rousset, Valdois, & Donnadieu, 2011; Hopkins &
Washburn, 2002). This global search strategy can be reversed
if adults are asked to process novel or unfamiliar structures
(Hasselmo & Stern, 2006).

Recently, research within our laboratory suggests that visu-
al fractals might also be processed using different strategies,
depending on whether recursive or non-recursive representa-
tions are primed (Martins, Fischmeister, et al., 2014; Martins,
Laaha, Freiberger, Choi, & Fitch, 2014). Not only are specific
neural systems active during recursive representations
(Martins, Fischmeister, et al., 2014), but there also seems to
be a change in visual processing strategies that correlates with
ontogenetic development, and with amount of exposure to
examples of fractals (Martins, Laaha, et al., 2014). How these
strategies relate with local or global biases is an exciting topic
of ongoing research.

Another issue of great interest here concerns the availabil-
ity of representation modes that allow compression of infor-
mation. More abstract and global-oriented strategies to repre-
sent visuo-spatial information seem to be more efficient be-
cause they allow the compression, or reduction, of the infor-
mation required to be kept online (Alvarez, 2011). In comput-
er science, fractal strategies have also been shown to be effi-
cient in the representation of complex hierarchies, precisely by
compressing the amount of information (Koike & Yoshihara,
1993). From this discussion sprouts the prediction that recur-
sive modes of representation are more abstract and lead to
better compression of information.

Current study

In the current study, we introduce and explore a new para-
digm, focusing specifically on recursion capabilities in the

Fig. 1 Recursive process generating a visual fractal

Fig. 2 Examples of structures produced by iteration, hierarchical
embedding, and recursion, and by various combinations of these
processes. A non-iterated hierarchical embedding corresponds to the
establishment of a dependency without repetition. The ability to
represent repetition and the ability to represent dependencies may be
orthogonal (Martins, 2012)
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visual domain using fractal images. Because fractals exhibit
hierarchical self-similarity, new hierarchical levels can be pre-
dicted by generalizing production rules and projecting them to
further levels. Our goals are: (1) to create and validate a new
task, (2) which allows us to distinguish between iterative,
hierarchical, and recursive processes, (3) from which we can
learn about the representation of recursion.

We present a series of experiments designed to validate em-
pirically this novel task, forming the basis for further research.

In Experiment 1 we show that humans use recursion in the
visual domain; in Experiment 2 we demonstrate that our Visual
Recursion Task (VRT) taps into specific cognitive resources
when contrasted with general intelligence, spatial working
memory, and a control Embedded Iteration Task (EIT); in
Experiment 3 we replicate the first two experiments introduc-
ing a number of important controls; and in Experiment 4 we
compare our new recursive task with another task that invites
recursive strategies – the Tower of Hanoi (Goel & Grafman,
1995) – confirming and expanding the evidence that VRT taps
into cognitive resources specific for recursion.

Experiment 1: Response paradigm and esthetic
biases

In Experiment 1 we tested whether adult humans are able to
make inferences about recursive embedding in the visuo-
spatial domain. This hypothesis would be supported by
above-chance accuracy in our VRT.

In this task, participants are exposed to the first three steps
of a process generating a visual fractal, and then asked to
discriminate, from two possible alternatives, which is the cor-
rect continuation (see details below).

Since we were interested in exploring how participants
would approach visual recursion, we gave minimal instructions
and did not restrict response time. We assessed the strategies
that participants reported after completing the task, and tested
whether certain cognitive strategies led to better performance.
We also evaluated the effects of the particular response para-
digm (binary forced-choice) and subjective esthetic preferences
on individuals’ accuracy by (1) adding an additional response
task (1-alternative forced-choice – correct/incorrect), and (2)
testing whether an esthetic preference for self-similar fractals
could account for participants’ choices, regardless of their abil-
ity to represent recursion. If participants were using a simple
strategy of esthetic preference towards well-formed fractals,
this would argue against our assumption that a cognitive strat-
egy was employed rather than simple visual heuristics.

Methods

Participants

We tested 20 volunteers (undergraduates and PhD students; 14
females and six males) aged between 20 and 44 years (M =
28.1, SD = 6) recruited at the University of Vienna. All par-
ticipants were tested using the same experimental apparatus,
and all reported normal or corrected-to-normal visual acuity.
All participants gave their prior written consent, and were not
paid for taking part. The research conformed to institutional
guidelines and Austrian national legislation regarding ethics.

Stimuli and procedure

Stimulus generation We based the VRT on the well-
established properties of fractal geometry (Mandelbrot,

Fig. 3 Example of a hierarchy (c) that can be generated either using a
non-recursive process (a) or a recursive procedure (b). While the
recursive representation of hierarchy (c) allows the generation of new

hierarchical levels, the iterative representation (a) does not, being
limited to within-level transformations
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1977). Visual fractals can be generated from single constitu-
ents such as lines, squares, or triangles (the initiators) by ap-
plying a simple transformation rule (the generator) a given
number of times (iterations). The structures generated by iter-
ating this process are hierarchical and self-similar (see Fig. 4
for a schematic overview).

We produced four successive iterations of 60 different
types of fractals, generated using Python code running in
Nodebox (version 1.9.5, http://nodebox.net), a visual
interface. For each of these 60 fractals, we produced (1) a
correct fourth continuation of the first three iterative steps,
and (2) an incorrect continuation as a Foil. This incorrect
fourth iteration was produced by applying a different
generator to the third stage, and had the same number and
size of constituents as the correct fourth iteration.

The fractals produced for this task can be divided into four
broad categories (see Fig. 5 for examples): (1) Polygons (n =
32), (2) trees (n = 9), (3) curves (n = 11), and (4) Koch snow-
flakes (n = 8). Peano curves and Koch snowflakes were pro-
duced using Lindenmayer systems (Lindenmayer, 1968). In
these systems, the recursive process substitutes each constitu-
ent with a set of new constituents without preserving the
initiator across iterations. The other two categories of fractals
were produced with custom Nodebox scripts.

Visual Recursion Task (VRT) 2-choice The three iterations
and two test images were arranged on a panel (Fig. 6). Each

panel depicted five images, presented simultaneously, ar-
ranged in two rows: The first three iterations of each fractal
(“sequence” images) were shown in the top row and two al-
ternatives for the fourth iteration (“correct” vs. “incorrect”
fourth iteration, henceforth “choice” images) were shown in
the bottom row. The position of the choice images (left or
right) was randomized. The sequence of panels was presented
on a computer screen in a randomized order, which was dif-
ferent for each participant, using custom Python software (ver-
sion 2.6, www.python.org).

Participants were instructed in English to select the image
they considered correct from the two “choice” images in the
bottom row and to “try to understand the right strategy and to
choose correctly as often as you can.” No further explanation
on what “correct” meant was provided.

Participants responded by pressing one of two buttons on a
button box (ioLab Systems), corresponding to the position of the
correct image (left or right). Auditory and visual feedback was
given for all trials. After an incorrect choice, the screen turned
red for 1.5 s and a negative feedback sound (frequency 98.0 Hz
and duration 1.5 s) was played. After a correct choice, the screen
turned white for 1 s and a positive feedback sound (frequency
348.7 Hz, duration 1 s) was played. The sounds were played
through Sennheiser HC 520 headphones. There was a 2-s inter-
trial interval. There was no time limit per trial (timeout) because
we did not want to constrain participants’ strategies, and because
we were interested in knowing how they would naturally ap-
proach the tasks when given minimal instructions.

Before the VRT began, participants were given a short
training session of five trials. The training stimuli were similar
to the VRT panels, except that the sequence of images was
generated according to a simple non-hierarchical iterative rule
(see Fig. 7).

Visual Recursion Task (VRT) 1-choice In order to evaluate
possible performance effects associated with a binary forced
choice paradigm, we designed a VRT 1-choice task. This task
was identical in all aspects to the basic VRT 2-choice, except
that only one image was presented in the center of the second
row of each panel, corresponding to either the correct or in-
correct fourth iteration (Fig. 8). Participants were instructed to
choose whether the image in the lower row was correct (right
button) or incorrect (left button). The same number (n = 10) of
correct and incorrect fourth iterations was presented.

Before the beginning of the task, the same five training
stimuli were presented as in VRT 2-choice, but with only
one “choice” image. Feedback and inter-stimuli intervals were
the same as in the VRT 2-choice task.

Esthetic preference task This task was designed to assess the
effects of possible preference biases inVRT 2-choice. Here, only
the “choice” images (“correct” and “incorrect” fourth iteration)
were presented on the screen (Fig. 9) with no previous

Fig. 4 Visual fractals can be conceived as visuo-spatial hierarchies:
Different elements (squares) are organized in a two-dimensional space,
defined by the xy-axis, and different hierarchical levels are organized
vertically along the z-axis. An element with a higher z value is
dominant over an element with a lower z value, if the elements are
connected
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“sequence” images. Participants were asked to simply select the
image they preferred. No auditory or visual feedback was given.

Procedure All participants began the experiment with the
preference task. Participants then performed both recursion
tasks in one of two possible orders: ten participants completed
VRT 1-choice before VRT 2-choice (“1–2” condition), and ten

participants performed VRT 2-choice before VRT 1-choice
(“2–1”condition). Participants were randomly assigned to
one of the two orders.

The same pool of 60 fractals was used in all tasks, with 20
fractals randomly assigned to each of the three tasks. The
distribution of fractal classes was balanced for all tasks and
each fractal appeared only once in each experimental session.

Fig. 5 Fractal categories and iterations: For each fractal, we generated
the first four iterations and an incorrect fourth iteration. The latter violated
the embedding rule used in the previous steps (small boxes contain

zoomed-in details). The fractals were grouped in four classes according
to the generating algorithm: Polygons (n=32), trees (n=9), curves (n=11)
and Koch snowflakes (n=8)

Fig. 6 Example of a two-choice stimulus in the Visual Recursion Task
(VRT). The first three iterations were presented in the top row.
Participants had to choose which of the images in the lower row was
correct. In this example, the correct image is on the left. Further stimuli
examples can be found in the Supplemental materials, part I, section S2

Fig. 7 Example of a training stimulus: The iterations followed a number
and shape rule but did not produce hierarchical structures. The correct
image is on the right. Further stimuli examples can be found in the
Supplemental materials, part I, section S1

Behav Res



Participants’ choices and reaction times (RTs; in millisec-
onds) were recorded for all stimuli and for all tasks. The per-
formance was calculated as the percentage of correct answers.
In the preference task, we recorded as “correct” answers the
occurrences where the preferred image corresponded to the
well formed fractal, i.e. to the correct fourth iteration. At the
end of each task, participants were asked to assess the kind of
strategy they had used on a five-point scale. The scale of
possible strategies was: 1 – “mostly intuitive”; 2 – “more
intuitive than analytic”; 3 – “mixed”; 4 – “more analytic than
intuitive”; 5 – “mostly analytic.” Intuitive answers were de-
scribed to the participant as being based on a gut feeling and
analytic answers as being derived by looking carefully at the
details and making explicit inferences.

Analysis

The proportion of correct responses and RTs were compared
between (1) VRT 2-choice and VRT 1-choice and (2) VRT 2-
choice and preference task. We used a semiparametric regres-
sion technique called Generalized Estimating Equations

(GEE), a technique useful when analyzing binomial data with
within-subjects effects (Hanley, 2003). When applied to bina-
ry data, this technique is similar to a logistic regression and in
comparison with generalized mixed models is more robust to
deviations from error distribution assumptions, and model
misspecifications (Ghisletta & Spini, 2004; Hubbard et al.,
2010). We also used this model to assess accuracy differences
between stimuli categories, and RT differences between tasks
(using gamma with a log link function). To assess whether
performance was above chance at the group level, for each
task, we tested whether GEE models’ intercepts were signifi-
cantly different from zero.

Furthermore, we assessed performance correlations between
these tasks. For percentages of correct responses and RTs we
tested if the data were normally distributed using the
Kolmogorov-Smirnov (K-S) test. If variables were continuous
and normally distributed we used Pearson’s bivariate correla-
tions, otherwise we used non-parametric Spearman
correlations.

All statistical analyses were performed using SPSS 19 (IBM).

Results

Performance

On average, participants scored 84% (SD = 12) correct inVRT
2-choice and 70 % (SD = 14) correct in VRT 1-choice
(Fig. 10). In the preference task, the “correct” image was

Fig. 8 Example of a VRT B1-choice^ stimulus. Participants had to decide
whether the image presented in the bottom row was correct or incorrect.
In this example, the image is correct

Fig. 9 Example of stimuli used in the preference task. Participants were
asked to choose the image they preferred

Fig. 10 Percentage of correct responses in VRT 1-choice, VRT 2-choice,
and preference task, in two different task-sequence conditions: B1-2^ and
B2-1.^ Bar charts showmedian (horizontal line), first quartile (lower edge
of the box), and third quartile (upper edge of the box). ° indicate outliers
deviating from the box between 1.5 and 3 times the interquartile range; *
indicate outliers deviating from the box more than 3 times the
interquartile range
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preferred in 58 % (SD = 11) of the trials. To assess whether
average response was above chance, we ran a GEE model for
each task, with “trial” (1–20) as the within-subjects variable.
All intercepts differed significantly from zero (all p < .05),
meaning accuracy was above chance in all tasks, at the group
level. To assess whether there were differences between tasks,
while controlling for task order, we ran a binary logistic GEE
model. We found a significant effect of task (generalized chi-
square = 16.5, p < .001), but no effect of task order (p = .15)
and no interaction between the two factors (p = .2). Pairwise
comparisons with a Bonferroni p-value adjustment showed
that performance was significantly lower inVRT 1-choice than
in VRT 2-choice (p < .001, odds ratio = 0.8); and higher in
VRT 2-choice than in the preference task (p < .001, odds ratio
= 0.7).

Analyzed by participant, the percentage of correct re-
sponses in VRT 2-choice was correlated with performance in
VRT 1-choice (r = .57, p = .009), but not with the preference
task (r = .27, p = .24). This correlation between VRT 1-choice
and VRT 2-choice was significant in the group of participants
that started the procedure with VRT 2-choice (n = 10; r = .797,
p = .006), but not in the group that started with VRT 1-choice
(n = 10; r = .260, p = .469).

Reaction time

On average, RT was 12.5 s (SD = 1) in VRT 1-choice, 12.2 s
(SD = 7) in VRT 2-choice, and 5.3 s (SD = 3) in the preference
task (Fig. 11). To assess whether there were differences

between tasks, while controlling for task order, we ran a gam-
ma log link GEE model. There was an effect of task (gener-
alized chi-square score = 11.4, p = .003), but not of task-order
(p = .5), and no interaction between the two factors (p = .7).
Specifically, we found a difference between VRT 2-choice and
preference task (mean difference = 7 s, p < .001) but not
between VRT 2-choice and VRT 1-choice (p = .8).

Strategy

At the end of each task, we asked our participants about the
strategy they used. In general, participants reported a more
intuitive strategy for the preference task (M = 2.45, SD = .9)
and a more analytic strategy in both VRT 1-choice (M = 4.2,
SD = .8) and VRT 2-choice (M = 4.0, SD =1.2). Interestingly,
participants who reported a more analytic strategy in VRT 2-
choice also had longer RTs (Spearman’s ρ = .485, p = .03) and
a higher percentage of correct answers (Spearman’s ρ = .585,
p = .007) than those participants who reported intuitive strat-
egies. This suggests that an analytic rather than an intuitive
strategy was optimal for the VRT.

Esthetic preferences

Another important issue was whether the decision between the
choice images in the 2-choice condition was influenced by
esthetic preferences. Given that the same 120 images were
part of the pool of possible choices in VRT 2-choice and pref-
erence task, we assessed the frequency with which each image
was chosen in both tasks (i.e., for each image, we counted the
number of times it was chosen in VRT 2-choice and preference
task). We found that these frequencies were not correlated (r =
.027; p = .838), meaning that the images chosen more fre-
quently in VRT 2-choice were not the images more frequently
chosen in the preference task, suggesting that esthetic prefer-
ences could not account for above-chance performance in the
recursion task.

Discussion

Our results suggest that human adults can quickly learn how to
use recursive information in the visual domain without being
explicitly trained or instructed about the concept of recursion.
Moreover, a self-reported analytic strategy was associated
with higher RTs, and significantly correlated with better per-
formance. Although response feedback was provided during
the task, participants were required to respond to a wide vari-
ety of stimuli, with different visual and structural features.
Structural recursion was the common element among these
stimuli and most likely this abstract regularity was transferred
across trials. We propose that the ability to represent structural
self-similarity in the visual domain was a necessary condition

Fig. 11 Average reaction time in VRT 1-choice, VRT 2-choice and
preference task, in two different task-sequence conditions: B1-2^ and
B2-1.^ Bar charts show median (horizontal line), first quartile (lower
edge), and third quartile (upper edge). ° indicate outliers deviating from
the box between 1.5 and 3 times the interquartile range; * indicate outliers
deviating from the box more than 3 times the interquartile range
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for good performance in this experiment, regardless of how
this information was represented.

Given that VRT performance could be influenced by the
response paradigm used as well as by esthetic biases in favor
of (or against) self-similar fractals, we included three tasks:
two recursive tasks (VRT 2-choice and VRT 1-choice) and a
preference task. Our findings rule out an effect of esthetic
preferences on performance in VRT, suggesting that subjects
do not use preferences as decision heuristics, and demonstrate
that both versions of the recursive task were similar to each
other: (1) Percentages of correct responses in VRT 2-choice
and VRT 1-choice were correlated. (2) RTs and self-reported
strategy were similar in these tasks but differed significantly
from the preference task. (3) Images preferred in the prefer-
ence task were not the images more frequently chosen as
“correct” in the VRT 2-choice condition.

However, there was a significant performance difference
between VRT 1-choice and VRT 2-choice, depending on task
order: Performance in the two tasks only correlated when VRT
1-choice was performed after VRT 2-choice (reaching a corre-
lation coefficient as high as 0.8). It seems that when VRT 2-
choicewas performed first in the presence of correct and incor-
rect information, participants learned to attend more closely to
the relevant image details, thereby increasing their accuracy in
VRT 1-choice afterwards. This might imply that the ability to
process recursion is influenced by the ability to orient attention
to the relevant features of the stimuli, and that poor perfor-
mance in such a task is not necessarily due to an inability to
process recursion, but may arise from incorrectly focussed vi-
sual attention. This interpretation is consistent with findings in
developmental data, in which young children fail in recursion
due to inefficient visual strategies (Martins, Laaha, et al., 2014).
Crucially, after being primed to attend to the relevant features of
the stimuli, participants were well able to perform in VRT 1-
choice (mean accuracy 76 %), showing that the comparison
between two choice images was not strictly necessary to dis-
criminate between correct and incorrect continuations of the
recursive process. This argues against a heuristic response strat-
egy purely based on the comparison between choice images.

Experiment 2: Recursive versus non-recursive
iteration

Experiment 1 suggested that human adults are able to represent
visual recursion successfully. However, it remains an open
question whether the VRT measures something specific to re-
cursion, or instead taps into a more general ability to extract
visual regularities. In Experiment 2, we attempted to gain more
specific insight into the cognitive processes underlying VRT.
We devised an Embedded Iteration Task (EIT) as a control
task, which shared the “hierarchicality” and iteration features
of VRT, but lacked recursive embedding. We compared

participants’ accuracy in both VRT and EITwith a standardized
measure of rule-based visual cognition (Matrix Reasoning
from WASI®, see below). Here we wanted to test whether
visual recursion, as measured by our task, can be dissociated
from other visuo-spatial hierarchical tasks (EIT) and general
visual intelligence capacity (WASI). For this purpose we used
correlation and regression analyses. Although exploratory, we
tested the general hypothesis that VRT would not be highly
correlated with general intelligence, and that VRT and EIT
would correlate with different cognitive abilities. These find-
ings would provide support for the existence of variancewithin
the performance of VRT that is explained by specific resources
recruited in the instantiation of recursive representations.

To produce EIT images, an iterative process embedded ad-
ditional elements within a pre-existing hierarchical structure,
without producing new hierarchical levels (Fig. 12). To em-
pirically validate the distinction between recursion and itera-
tion we first assessed the behavioral response profile for both
tasks. Furthermore, we tested whether different cognitive abil-
ities (fluid intelligence and working memory) predicted accu-
racy in solving the two tasks.

Methods

Participants

We tested 30 volunteers (university undergraduates and em-
ployees; 21 females) aged between 18 and 39 years (M = 23.6,
SD = 5) recruited at the Lisbon Faculty of Medicine.
Education ranged between 11 and 20 years of successfully
completed studies (M = 15.6, SD = 2). All participants were
tested in the same room, with the same experimental apparatus
as Experiment 1, and all reported normal or corrected-to-
normal visual acuity. Participants were paid 10 Euros for par-
ticipating and gave their written informed consent. The re-
search conformed to the appropriate institutional and national
legislation regarding ethics.

Stimuli and procedure

VRT Stimulus generation and experimental procedure were
similar to VRT 2-choice described in Experiment 1. In this
experiment only 40 test panels were presented to each partic-
ipant (13 “polygons,” seven “trees,” 11 “curves,” and nine
“Koch snowflakes”).

Embedded Iteration Task (EIT) EIT is a control task in
which hierarchical structures are generated using simple iterative
transformation rules that add elements within certain hierarchi-
cal levels, but without generating new levels (process A,
Fig. 12). This is in contrast to VRT, in which new hierarchical
levels are generated at each step of the transformation process.
Crucially, both processes generate similar structures (Fig. 3).
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EIT and VRT stimuli were hierarchical structures generated
by Python scripts in Nodebox and were very similar to VRT
fractals. Each VRT item was modified to generate a corre-
sponding EIT item, with a precise one-to-one correspondence
in size, structure, and element identity. In VRT, each iteration
produced a new hierarchical level, while in EIT the first image
was already a hierarchical structure and each iterative step
merely added one additional item within a chosen hierarchical
level, without generating a new level (see Fig. 13). Crucially,
both VRT and EIT generated hierarchies of the same number
of elements and the same number of hierarchical levels.

To control for the use of a simple similarity assessment
strategy in EIT, we included ten stimuli (“repetition foils”)
requiring participants to represent the cumulative addition of
constituents (Fig. 13). In this subset of stimuli, one of the
choice images was a simple repetition of the third iteration;
there was no increase in the number of constituents from third
to fourth iteration, hence this was the incorrect choice. In the
remaining 30 stimuli, we used “positional foils” in which the

possible choices contained the same number of elements but
differed in their overall positional scheme (Fig. 13). These 40
panels were intermixed. With these two conditions, we aimed
to evaluate whether participants were able to detect both the
iterative and positional properties of the hierarchical stimuli.
More examples of EIT items are available in the Supplemental
materials, part I, section S3.

Cognitive assessment All participants also performed a bat-
tery of standardized cognitive tasks. Verbal short-term mem-
ory and working memory were assessed using Digit Span
(Richardson, 2007). Spatial short-term memory and working
memory were assessed with two sub-tests of CANTABeclipse
Spatial Span (Owen, Morris, Sahakian, Polkey, & Robbin,
1996): (1) “forward” (the number of items successfully repeat-
ed in the same order as the example) and (2) “backwards” (the
number of items successfully repeated in the reverse order).
Finally, we used un-standardized scores (number of items an-
swered correctly) in two sub-tests of the WASI (Wechsler,

Fig. 12 Principles underlying the generation of hierarchies in the Visual
Recursion Task (VRT) and Embedded Iteration Task (EIT). (A) In EITwe
used an iterative rule that adds elements to a previous existing hierarchy,

without generating new levels; (B) in VRT we used a recursive rule that
adds elements to newly generated hierarchical levels

Fig. 13 Examples of Embedded Iteration Task (EIT) stimuli. (A): BPositional^ category (n=30), correct image is on the left. (B): BRepetition^ category
(n=10), correct image is on the right. See Supplemental material, part I, section S3 for further examples
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1999) test battery – “vocabulary” and “matrix reasoning” – as
proxies for crystallized and fluid intelligence.

Procedure The procedure took about 90 min in total. All
instructions were given in Portuguese. VRT and EITwere ran-
domly assigned either to the beginning or end of the procedure
and the cognitive assessment was conducted between the two
tasks. Within VRT and EIT, trial order was differently random-
ized for each participant. Feedback was provided as in
Experiment 1, and there was no timeout limit.

Analysis

To test for accuracy and RT differences between VRT and EIT
we used the same statistical techniques as in Experiment 1.

We performed correlation analyses to assess whether per-
formance in VRT and EIT provided non-redundant informa-
tion relative to standardized measures of intelligence and
working memory.

Furthermore, to probe for cognitive-specific differences be-
tween VRT and EIT, we performed partial correlations, and a
Principle component analysis (see Supplementary materials,
part II).

All statistical analyses were performed using SPSS 19
(IBM).

Results

VRT and EIT performance

Raw scores (clustered by participant) are depicted in Fig. 14.
Overall, participants performed above chance in both tasks
(both GEE model intercepts differed from zero, p < .001),
but accuracy was significantly higher in EIT (M = 92 %, SD
= 8) than in VRT (M = 84 %, SD = 7) (generalized chi-square
score = 14.5, p < .001, odds ratio = 0.5).

In EIT, participants performed above chance in both foil
categories (both GEE model intercepts differed from zero, p
< .001), but performed worse in trials with “Repetition” (M =
87%, SD = 17) than with “Positional” foils (M = 93%, SD = 7)
(generalized chi-square score = 4.2, p = .04, odds ratio = 0.5).

Mean RTwas longer in VRT (M = 22.2 s, SD = 12) than in
EIT (M = 18.4 s, SD = 7) (generalized chi-square score = 6.1, p
= .013, odds ratio = 0.8). For correlation purposes, we also
applied an arcsin-transformation (Y = asin(sqrt(X))) to the
accuracy data of VRT and EIT, and achieved normality in
VRT (K–S, p > .05). After excluding an extreme outlier (with
performance deviating from the mean more than 2 standard
deviations (SDs)) we also achieved normality in EIT. Further
analyses excluded this outlier. Performance on both tasks cor-
related across participants in accuracy (r = .506, p = .005) and
RT (r = .781, p < .001). Similar to Experiment 1, participants

with longer RTs performed better in VRT (r = .520, p = .004)
but also in EIT (r = .388, p = .04).

Finally, to investigate whether there was an effect of learn-
ing, we assessed whether RT decreased with the accumulation
of trials. We performed a power curve fitting regression anal-
ysis, with RT as dependent variable and trial as predictor. This
analysis was significant for bothVRT (F (1,39) = 6.8, r = 0.39,
p = .013) and EIT (F (1,39) = 31.0, r = 0.67, p < .001),
meaning that RT decrease across trial fitted a power curve,
suggestive of a learning effect (Anderson, 1982). This learn-
ing precludes that participants used idiosyncratic strategies to
solve each trial, and rather suggests that a common strategy
was used across trials.

Stimulus categories analysis

In this experiment, we performed accuracy analyses for all
four stimuli categories (Polygons, Trees, Curves, and Koch
Snowflakes) (see Fig. 4, and Supplemental materials, part I).
Within each stimulus category, accuracy scores were above
chance (all intercepts significantly differed from zero, p <
.001) (Fig. 15), for both VRT and EIT. To assess whether there
were differences in performance between categories, we ran a
GEE model with correctness (correct/incorrect) as the depen-
dent variable, and task (VRT vs. EIT) and “stimulus category”
as the within-subjects factors. We found a significant interac-
tion between “task” and “stimulus category” (generalized chi-
square score = 20.7, p < .001). Specifically, while there were
no significant differences between “stimulus categories” in
EIT (all pairwise comparisons p > .05, with Bonferroni

Fig. 14 Accuracy across tasks: VRT (Visual Recursion Task), EIT
(Embedded Iteration Task), and in the two sub-tasks (a, b) of EIT. The
boxplot divides the scores into quartiles, the Bbox^ represents the distance
from the 25th percentile to the 75th percentile and is called the
interquartile range. The horizontal dark line is the median. ° indicate
outliers deviating from the box between 1.5 and 3 times the
interquartile range; * indicate outliers deviating from the box more than
3 times the interquartile range
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correction), in VRT participants performed better with “poly-
gons” and “trees” than “curves” and “Koch snowflakes”
(Pairwise comparisons p < .001, with Bonferroni correction).

Correlations with fluid intelligence and working memory

Fluid intelligence and crystallized capacity are two classical
constructs which compose measures of general intelligence.
While fluid intelligence is usually equated with the ability to
solve new problems, crystallized capacity refers to semantic
knowledge. In order to assess whether VRT and EIT scores
were redundant relative to these measures of intelligence, we
compared them to participants’ performance in a Matrix
Reasoning task (MR) and in a Vocabulary task. Raw results
are depicted in Table 1. Overall Pearson correlations are
depicted in Table 2. After p-value correction with the
Bonferroni-Holm method (with FWE level = .05), we found
a significant correlation between EIT and MR (r = 0.51, p =
.03), and between VRT andMR (r = .49, p = .04). One partic-
ipant had anMR score that was two standard deviations below
the mean. When this outlier was excluded from the analysis,
these correlations became non-significant (MR and EIT (r =
0.35, p = .06, uncorrected), and MR and VRT (r = 0.29,

p = .14, uncorrected)). This suggests these correlations are
not stable, and might be driven by idiosyncratic participants.
The score in the “vocabulary” task (proxy for crystallized
intelligence) was not correlated with VRT or EIT (p > .1).

We also wanted to assess to what extent the capacity for
processing verbal and visual information influences VRT and
EIT accuracy. Therefore, we assessed our participants’ short-
term and working memory abilities, in both the visuo-spatial
and verbal domains. Due to technical problems there were
eight missing values in Spatial working memory. Raw scores
are depicted in Table 1 and overall correlations in Table 2.

After p-value correction with the Bonferroni-Holm method
(with FWE level = .05), there were significant correlations
between EIT and spatial working memory (r (22) = .54, p =
.045). VRT performance did not correlate significantly with
performance in either memory task.

VRT versus EIT: Cognitive resources

We performed partial correlation analyses to assess whether
different cognitive resources predicted performance in VRT
and EIT. After controlling for the overall variance explained
by VRT, EIT remained significantly correlated with spatial
working memory (r (19) = .45, p = .041). This suggests that
EIT performance may require the activation of specific visuo-
spatial resources to a greater extent than VRT. The inverse
analysis (correlations with VRT, controlling for EIT) yielded
no significant correlations. We also performed a Principal
component analysis (KMO = 6.33, Bartlett’s test of sphericity
χ2 = 49.1, p < .001) (see Supplemental materials, part II for
details) to assess the correlational structure of our data. This
analysis clearly divides the tasks into three big clusters:
Cluster 1 includes MR, spatial working memory, spatial
short-term memory, and EIT; Cluster 2 includes short-term
memory tasks and spatial working memory; and Cluster 3

Fig. 15 Percentage of correct responses in Visual Recursion Task (VRT) and Embedded Iteration Task (EIT) across different stimulus categories

Table 1 Summary of results in the standardized cognitive tasks

N Minimum Maximum Mean SD

Matrix Reasoning 30 22 35 30.67 3.06

Vocabulary 30 59 79 71.43 5.44

Verbal STM 30 4 9 6.70 1.18

Verbal WM 30 3 8 5.43 1.52

Spatial STM 30 3 9 7.10 1.52

Spatial WM 22 5 9 7.09 1.34

STM short-term memory, WM working memory, SD standard deviation
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includes verbal working memory, EIT, and VRT. This confirms
that VRT, in comparison with EIT, is much less dependent on
specific visuo-spatial resources, even though it is a visuo-
spatial task. This finding also argues against the use of simple
visual heuristics to solve VRT.

Discussion

Experiment 2 compared the processing of recursively and it-
eratively generated items, and sought possible correlations
with other standard psychometric measures. We found that
performance in VRT diverged from non-recursive iterative
embedding and from a standardized (visual) fluid intelligence
task. These results suggest that performing VRT activates spe-
cific cognitive resources, and that this task does not simply
measure the general ability to perform rule-based visual tasks.
Moreover, our results suggest that visual recursion correlates
less with visual-specific resources than with embedded
iteration.

First, with the “repetition foils,” we were able to show that
a simple visual heuristic strategy based on visual similarity is
not sufficient for solving EIT. Our results demonstrate that
most participants understood the iterative rules displayed in
the stimuli, and thereby were able to choose the correct con-
tinuation of those rules. Crucially, they did so even when the
correct continuation of the iterative process (fourth iteration)
was not the response choice most similar to the third iteration.
Even though rejecting these “repetition foils” was not trivial,
as hinted by a lower accuracy score in comparison with the
“positional” foils, the participant’s accuracy was still far above
chance in these trials (M = 87 %) .

Second, regarding the correlations with standardized cog-
nitive measures, only a portion of VRT and EIT variance could
be predicted by matrix reasoning and working memory per-
formance. This suggests that our new tasks tap (at least

partially) into distinct cognitive abilities. Matrix reasoning
seemed to be a mild predictor of VRT (24 %) and EIT
(26 %), but excluding a single outlier participant eliminated
these correlations.

Third, we found that spatial working memory was a better
predictor of EIT than VRT, and that EIT was more closely
associated with tasks tapping into specific visuo-spatial re-
sources (spatial short-term memory, spatial working memory,
and matrix reasoning). If EIT loads higher in processing ca-
pacities associated with the visual domain, VRTmight crucial-
ly depend on other general capacities, such as the ability to use
chunking and segmentation (Halford, Wilson, & Phillips,
1998), or greater representational generality/abstraction
(Alvarez, 2011), which have been shown to reduce the cogni-
tive demands of hierarchical processing. For instance, the
Tower of Hanoi is a task that requires the ability to build goal
hierarchies with several levels of embedding. The number of
variables that humans can process simultaneously is four, but
the correct execution of Tower of Hanoi requires hierarchies
with a greater number of embedded steps (Halford et al.,
1998). One possible strategy to make Tower of Hanoi tracta-
ble is to segment the main goal into smaller subordinate sub-
goals, and to build a general/abstract recursive representation
that can be used across all hierarchical levels. These strategies
clearly reduce relational processing demands, using cognitive
resources unrelated to working memory storage.

Finally, while participants performed above chance in all
stimuli categories, there were significant differences between
categories. In VRT, accuracy in “polygons” and “trees” was
higher than in “curves” and “Koch snowflakes”. One possible
explanation for this difference may be due to the fact that for
“polygons” and “trees,” the visual information from a certain
iteration n remains present in the iteration n+1. For example,
in a “tree” fractal, an iteration n+1 contains all the branches of
the previous iteration n plus additional new branches (See

Table 2 Correlations between standardized cognitive tasks, Visual Recursion Task (VRT) and Embedded Iteration Task (EIT)

1.
VRT

2.
EIT

3.
VSTM

4.
VWM

5.
Vocab.

6.
MR

7.
SSTM

1. VRT

2. EIT 0.506**

3. Verbal STM (VSTM) −0.225 −0.149
4. Verbal WM (VWM) 0.357 0.425* 0.405*

5. Vocabulary (Vocab.) 0.09 −0.103 −0.109 0.114

6. Matrix Reasoning (MR) 0.486** 0.508** −0.310 0.331 −0.036
7. Spatial STM (SSTM) 0.250 0.274 0.318 0.571** −0.016 0.360

8. Spatial WM (SWM) 0.334 0.541** −0.105 0.504* −0.271 0.670** 0.588**

VRT Visual Recursion Task, EIT Embedded Iteration Task, STM short-term memory, WM working memory, SD standard deviation

*p<.05

**p<.01, for uncorrected p-values
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Supplemental materials, part I, S2). In a typical “curve” frac-
tal, the whole visual contour is transformed from one iteration
to the next, because every segment of the curve is transformed
according to the recursive rule. Thus, while the structural
“core” is preserved from one iteration to the other in “poly-
gons” and “trees” (analogous to “Mother’s bike” → “John’s
mother’s bike”), in “curves” and “Koch snowflakes” the
“core” constituents of a certain iteration are separated in space
in the next iteration (analogous to “The driver drinks”→ “The
driver that the mother loved drinks”). The fact that participants
scored above chance in all stimulus categories of a task where
all stimuli were intermixed and feedback was provided (facil-
itating learning from one trial to the next), suggests that dif-
ferences in performance may be due to the differing visual
processing demands of the tasks, rather than differences in
the participants’ understanding of recursive embedding per
se. As an alternative, these differences in performance might
have been caused by the fact that there were differences in the
number of items in each category, or that items from the
“Koch snowflakes” and “curves” categories contained infor-
mation of a higher spatial resolution, making the relevant de-
tails potentially harder to see.

Experiment 3: Effects of response feedback
and stimulus categories

In Experiments 1 and 2 we investigated whether human
adults were able to solve a task that required them to form
representations of visual recursion. We provided response
feedback in both experiments. It could be argued that this
training experience, giving response feedback, allowed par-
ticipants to develop alternative heuristic strategies by trial-
and-error, thus avoiding the need to represent hierarchical
self-similarity (e.g., participants might base their choice on
which image is more similar to the most recent iteration). To
test for these effects we assessed performance in VRT and
EIT, in a procedure without response feedback. Furthermore,
here we also included repetition foils in VRT, in a procedure
similar to EIT in Experiment 2. If performance in these tasks
were adequate in the absence of feedback, and if participants
showed learning from one trial to the next, even in the
presence of different foil categories, then this would suggest
that participants were inducing a rule, rather than using idi-
osyncratic and simple heuristic strategies (Dewar & Xu,
2010). We also tested for internal reliability of both VRT
and EIT. Again, if the items within each task were highly
correlated, this would suggest that similar strategies were
being used across trials. Finally, we performed entropy and
spatial frequency analyses to rule out the use of simple vi-
sual heuristics strategies in the decision between choice
images.

Method

Participants

We recruited 24 volunteers (university undergraduates and
employees, 12 females) aged between 19 and 47 years (M =
26.6, SD = 5.5) at the University of Vienna. All participants
were tested in the same room, with the same experimental
apparatus as Experiment 2, and all reported normal or
corrected-to-normal visual acuity. Participants were paid 7
Euros for participating and gave their written informed con-
sent. The research conformed to the appropriate institutional
and national legislation regarding ethics.

Stimuli and procedure

Visual Recursion Task (VRT) Stimulus generation and exper-
imental procedure were similar to Experiment 2. In this experi-
ment, 40 test panels were presented to each participant. We di-
vided the stimuli into two complexity categories: “core preserva-
tion” stimuli (“polygons” and “trees,” n=20) and “core transfor-
mation” stimuli (“curves” and “Koch snowflakes,” n=20). To test
for the use of similarity-based heuristic strategies we included ten
VRT stimuli with “repetition” foils (five core preserving and five
core transforming), and 30 stimuli with “positional” foils (15 core
preserving and 15 core transforming); see Fig. 16 for examples.
As in the previous experiments, correct and incorrect choices
were well matched for visual complexity. On average, image
entropy (extracted using Python code written by Noveski
(2010)) was 2.66 for correct answers and 2.58 for incorrect an-
swers (t-test = 0.6, p = .5). For trials depicting positional foils,
entropy levels were even more strongly matched (2.62 for both
correct and incorrect images).

In addition to entropy, we performed spatial frequency anal-
yses. The rationale was the following: it could be argued that our
participants used simple visual heuristics to solve VRT, based on
low-frequency spatial information. In other words, simple heu-
ristics based on general image configuration, without requiring
an understanding of the underlying structure. To address this
issue, we performed Fast Fourier Transforms of both choice
images, and compared their average power for low frequencies
(below 6 cycles/image; see full spectrum analysis in
Figure S5.1, Supplementary materials, part IV). We found no
differences between correct images and foils (paired t-test =
−0.5, p = .6), meaning that there were no systematic differences
between choice images at low spatial frequencies. Hence, this
“general configuration” information could not have been used to
discriminate between correct and incorrect images.

Embedded Iteration Task (EIT) As in VRT, there were 40
EIT stimuli, ten with “repetition” foils (five core preserving
and five core transforming), and 30 stimuli with “positional”
foils (15 core preserving and 15 core transforming); see
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Fig. 17 for examples. Visual entropy was well matched be-
tween correct (M = 2.4) and incorrect answers (M = 2.4) (dif-
ference not significant, n.s.), and between VRT and EIT choice
images (F (1,76) = 1.5, p = .23). Similar to VRT, we performed
spatial frequency analyses and found no differences between
correct and incorrect answers regarding their power in low
spatial frequencies (paired t-test = 0.8, p = .4; see full spec-
trum analysis in Fig. S5.2, Supplementary materials, part IV).

Procedure and analysis Participants were tested in a proce-
dure that took about 60 min. The order of VRT and EIT was
balanced across participants. Responses and RTs were recorded.

General accuracy scores were computed for VRT and EIT,
and specific accuracy scores were computed for the categories
“core preservation,” “core transformation,” “repetition” foils,
and “positional” foils. Principles for statistical analysis were
the same as in the previous experiments.

Results

On average, the percentage of correct answers was 86 % (SD
= 1) in VRT and 89 % in EIT (SD = 1). This difference was
not significant (generalized chi-square score = 2.5, p = .1). In

order to test for our tasks’ internal consistency, we performed
internal reliability analyses (Cronbach, 1951). Both tasks pre-
sented acceptable levels of reliability (Cronbach’s alpha = .71
for VRT and Cronbach’s alpha = .88 for EIT), suggesting they
were measuring internally consistent constructs.

Similar to Experiment 2, RT decreased with the number of
trials fitting a power curve in both VRT (F(1,39) = 11.5, r =
0.48, p = .002) and EIT (F(1,39) = 8.2, r = 0.42, p = .007).
This suggests a learning effect and a transfer of information
from one trial to the other, even though there were different
stimulus categories and no response feedback.

Performance for different stimuli categories is depicted in
Fig. 18. At the group level, performance was above chance for
all foil and stimuli categories (all GEE model intercepts: p <
.001). Interestingly, although overall performance in VRTwas
similar to EIT, there were differences in the patterns of re-
sponse (see details in Supplemental materials, Part III):

1) We found an interaction between task and foil (general-
ized chi-square score = 13.5, p < .001, odds ratio = 5.1).
In EIT, participants scored significantly better in trials
with positional foils (M = 92 %, SD = 1) than in trials
with repetition foils (M = 78 %, SD = 2) (p = .003, after

Fig. 16 Examples of fractals used in the Visual Recursion Task: The first
four iterations of a fractal generation, as well as one foil (Bincorrect^
fourth iteration), were produced. There were two categories of rule

complexity: core preserving and core transforming; and two categories
of foils: Bpositional^ and Brepetition^ (see text for details)

Fig. 17 Examples of fractals used in the Embedded Iteration Task: The
first four iterations of a fractal generation using a non-recursive process,
as well as one foil (incorrect fourth iteration), were produced. There were

two categories of Bvisual complexity,^matching VRTcore preserving and
core transforming. There were also two categories of foils: Bpositional^
and Brepetition^ (see text for details)
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sequential Bonferroni correction, odds ratio = 0.3). The
opposite pattern was found for VRT, in which participants
scored significantly better in trials with repetition foils (M
= 91 %, SD = 1) than in trials with positional foils (M =
84 %, SD = 1) (p < .001, after sequential Bonferroni
correction, odds ratio = 1.6).

2) We also found an interaction between task and stimulus
complexity (generalized chi-square score = 4.9, p = .03).
Specifically in VRT, participants scored lower in core
transformation trials (M = 82 %, SD = 1) than in core-
preservation trials (M = 90 %, SD = 1)(p = .04, after
sequential Bonferroni correction, odds ratio = 0.6). In
EIT, this difference was not significant (90 % vs. 87 %,
p = .5).

Discussion

In Experiment 3, we replicated the results of Experiment 2 with-
out providing response feedback to the participants, and includ-
ing different kinds of foils. We found that participants were still
able to solve the tasks, and showed a learning effect. This sug-
gests that that they were able to induce abstract principles com-
mon across trials (Dewar & Xu, 2010). Crucially, both for VRT
andEIT, performance could not be explained by the use of simple
heuristic strategies based on image complexity or “general con-
figuration,” since correct and incorrect images were identical in
both entropy and power density at low spatial frequencies.

Furthermore, participants rejected the repetition foils con-
sistently, that is, the choice image identical to the third itera-
tion, which suggests that they were not simply performing an
assessment of similarity between choice images and the first
three iterations. In EIT, even though performance was above
chance in both repetition and positional foils, participants had

some difficulty in rejecting the repetition foils. In line with the
results of Experiment 2, participants seemed to use different
cognitive resources to solve VRT and EIT, even though overall
performance was balanced across tasks.

Further evidence for specifically hierarchical processing in
VRT is suggested by performance differences found between
core preservation and core transformation stimuli. Participants
scored lower in stimuli where hierarchical transformations
from one iteration (n) to the next (n+1) were more complex
(see Fig. 15, and Discussion in Experiment 2). Even though
the choice images used in VRT and EIT were of the same
degree of visual complexity, we found no performance differ-
ences between core-preservation and core-transformation
stimuli in EIT. This suggests that these results were not due
to the intrinsic complexity of the images, but rather to the
complexity of the processes used to generate them (only in
VRTwas there a new hierarchical level, rendering evident the
difference in the complexity of processes generating core-
preservation and core-transformation hierarchies).

Taken together these results suggest that our participants
were sensitive to the processes generating new hierarchical
levels, that they were able to learn abstract principles and
generalize this information across trials without any feedback
or training, and that they were not using simple visual heuris-
tic strategies. These findings provide further support to the
hypothesis that human adults can represent recursive princi-
ples underlying self-similar hierarchies in the visual domain.

Experiment 4: Cognitive correlates of recursive
and iterative rules with explicit training

In this experiment we again assessed how performance on
recursive and iterative tasks correlated with different cognitive

Fig. 18 Percentage of correct responses for different stimulus categories.
(A) performance for repetition and positional foils. Performing
adequately in repetition foils means correctly rejecting the image more
similar to the third iteration, when this image is not the correct

continuation of the iterative process. (B) performance for core
transforming and core preserving stimuli. In the Visual Recursion Task
(VRT), Btransformation^ stimuli are generated by a more complex rule
than Bpreservation^ stimuli
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variables, but unlike in Experiment 2, we explicitly instructed
our participants about the concepts of recursion and iteration.
The motivation behind this manipulation was to prime partic-
ipants to use recursive and iterative representations as we con-
ceived them, and reduce the probability that each participant
would develop his/her own idiosyncratic strategy. We hoped
to increase the specificity of the correlational analyses and
reduce the noise.

A replication of previous results would provide converging
evidence supporting that the representation of recursion and
iteration plays a significant role in our tasks. In addition, in
this experiment we also added the Tower of Hanoi task to our
test battery. Tower of Hanoi involves hierarchical processing
of a sequence of movements and is best solved using a recur-
sive strategy (Goel & Grafman, 1995). A specific correlation
between VRT and Tower of Hanoi performance would thus
lend support to the hypothesis that the VRT taps into cognitive
resources associated with recursive processing.

Method

Participants

We tested 40 volunteers (university undergraduates and em-
ployees, 21 females) aged between 20 and 32 years, who were
recruited at the University of Vienna. All participants were
tested in the same room with the same experimental apparatus
as in Experiment 2, and all reported normal or corrected-to-
normal visual acuity. Participants were paid 30 Euros for par-
ticipating2 and all gave their written informed consent. The
research conformed to the appropriate institutional and nation-
al legislation regarding ethics.

VRT and EIT

We used shortened versions of the tasks already described in
Experiment 3. VRT and EITwere composed of 14 items each
(seven items each of the two foil categories). We reduced the
number of items because participants were explicitly
instructed regarding the recursive and iterative rules and thus
were expected to need fewer trials to perform adequately. In
the instruction phase, participants were shown examples of
sequences of images depicting the generation of hierarchies
using recursive or iterative processes.

1) In the recursive condition their attention was drawn to the
big polygon at the center of the first image, and were told
that this polygon would be a seed for a recursive transfor-
mation, meaning that a certain number of smaller polygons

would be placed around it, according to a certain spatial
rule. Then, their attention was drawn to the second itera-
tion, and to the smaller polygons that were just added to the
structure. They were told that these smaller polygons
would be new seeds for a similar transformation, meaning
that new smaller elements would be added, at the same
relative positions to the center of the seed as in the previous
step. They were shown the result of this process in the third
image. Then they were told that the process would be re-
peated for the next step. Their task would be to find for
each trial the spatial configuration that would be common
across hierarchical levels, in order to determine which im-
age corresponded to the next correct continuation, and to
select this image from two possible alternatives.

2) In the iterative condition their attention was drawn to the set
of polygons with the third biggest length (third hierarchical
level), and told that each of these polygons would be a seed
to an iterative transformation, meaning that at each step a
single smaller element would be added around each seed,
according to a certain angle and distance from the center. In
our example, the first iteration already contained a small
element at the angle 0°, relative to each seed. In the second
image we added a second element at 90° relative to the
same seed, and in the third image, an element was placed
at 180°. We pointed explicitly to these transformations.
Then they were told that the process would be repeated
for the next step. Their task would be to find for each trial
the spatial configuration that would correctly complete this
sequence (in this case a new element at the angle position
270°), in order to determine which image corresponded to
the next correct continuation, and to select this image from
two possible alternatives.

All items were of the simpler “core preserving” category.
We restricted our test items to this category because in the
previous experiments performance was more consistent and
rule application was clearer than for items of the “core
transforming” category. Furthermore, the new set of items
corrected for many of the cross-item idiosyncrasies of the
previous experiments (see Supplemental materials, part V).
Visual entropy levels were well matched between choice im-
ages (correct and incorrect, both M = 0.895), and between
tasks (VRT and EIT, both M = 0.895).

Cognitive assessment

We applied a neuropsychological test battery which was com-
posed of computerized versions of digit span backwards
(DSPAN, a task of verbal working memory), Corsi block tap-
ping backwards (CORSI, a task of spatial working memory),
Tower of Hanoi (a task of recursive planning in action se-
quencing, computer software retrieved from http://pebl.sf.
net/battery.html) (Mueller, 2011)), and a paper-and-pencil

2 This experiment was the first part of a longer experimental procedure,
including an FMRI session, published elsewhere (Martins, Fischmeister,
et al., 2014).
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version of Raven’s progressive matrices (RAVEN, a test of
non-verbal intelligence) (Raven, Raven, & Court, 2004). We
recorded and analyzed the maximum number of elements cor-
rectly reproduced in DSPAN and CORSI, the maximum
length (in number of steps) of Tower of Hanoi problems that
participants were able to complete without errors, and the
number of correct answers in RAVEN.

Procedure and analysis

Participants were tested in a procedure that took 60 min. The
order of VRT and EIT was balanced across participants. The
neuro-cognitive test battery was performed after VRT and EIT.
Principles of statistical analysis were the same as for the pre-
vious experiments.

Results

The average percentage of correct answers was 83 % in VRT
(SD = 2), and 81 % in EIT (SD = 2). Results in the neuropsy-
chological tests are depicted in Table 3 and correlation results
are depicted in Table 4. The percentage of correct answers in
VRTwas significantly correlated with the maximum length of
Tower of Hanoi problems that participants were able to com-
plete without errors (r = 0.42, p = .011), while the percentage
of correct answers in EIT was significantly correlated with
spatial working memory (r = 0.43, p = .009). These correla-
tions remained significant after p-value correction with the
Bonferroni-Holm method (with FWE level = .05). Crucially,
to assess whether the VRT was specifically correlated with
Tower of Hanoi, we performed a partial correlation analysis,
controlling for EIT variance. The correlation betweenVRTand
Tower of Hanoi remained significant (r = 0.4, p = .02).

Similar to Experiments 2 and 3, in this experiment RTs
decreased across trials in both VRT and EIT, and this decrease
fitted a power curve: F(1,35) = 19, r = 0.61, p < .001, for EIT
and F(1,35) = 33.6, r = 0.7, p < .001, for VRT.

Discussion

This experiment replicated the findings of Experiment 2
concerning the correlations between multiple cognitive tasks

and the application of recursive and iterative rules. Explicit
instructions were found to have little effect, either negative
or positive. There were several differences between
Experiments 2 and 4: in Experiment 4 there were less trials
of each task, there was neither training nor feedback, trials
containing iterative and recursive items were intermixed, and
we only included “core-preserving” items. It is noteworthy
that with so many differences, the exact same correlational
profile was found: We confirmed that EIT is more correlated
with specific spatial resources than VRT, and that non-verbal
intelligence is not a good predictor of either task. Furthermore,
we showed that VRT, but not EIT, correlates with Tower of
Hanoi, a hierarchical planning task inviting a recursive solu-
tion (Goel & Grafman, 1995). Crucially, we used a measure of
Tower of Hanoi that forced participants to plan the complete
solution of each problem before starting a trial. This required
the representation of a chain of sub-goals embedded within
other goals (Anderson & Douglass, 2001), which some have
argued to be recursive (Pulvermüller & Fadiga, 2010). Taken
together, these results strongly suggest again that our novel
visual recursion task taps into cognitive resources associated
with recursive representations.

General discussion

Even though recursion is a concept that has long fascinated
scholars from many fields, it has recently sparked a heated
discussion in cognitive sciences due to the proposed relation-
ship between recursion, language, and the exceptionality of
the human cognition (Corballis, 2014; Fitch et al., 2005;
Hauser et al., 2002). Despite considerable debate surrounding
the hypothesis that recursion is specific to humans and to
language (Corballis, 2007; Fitch, 2010; Fitch et al., 2005;
Gentner et al., 2006; Hulst, 2010; Jackendoff & Pinker,
2005; Pinker & Jackendoff, 2005), this hypothesis remained

Table 3 Summary of neuro-psychological pre-testing results

M SD Minimum Maximum

ToH 5.3 1.6 0 7

Verbal WM 6.9 1.2 4 9

Spatial WM 6.5 1.3 3 9

RAVEN 29.7 2.7 17 32

M: Mean, SD: Standard deviation, WM: Working memory, ToH: Tower
of Hanoi. RAVEN: Raven's progressive matrices

Table 4 Correlations between Visual Recursion Task (VRT),
Embedded Iteration Task (EIT) and other neuro-psychological tasks

1.
VRT

2.
EIT

3.
ToH

4.
VWM

5.
SWM

1. VRT

2. EIT 0.44**

3. ToH 0.42* 0.20

4. Verbal WM (VWM) 0.31 0.28 0.303

5. Spatial WM (SWM) 0.21 0.43** 0.09 0.58**

6. RAVEN 0.26 0.09 0.13 0.33* 0.24

WMworkingmemory, ToH Tower of Hanoi, RAVENRaven's progressive
matrices *p<.05

**p<.01, for uncorrected p-values
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untested due to the lack of an empirical method to assess the
ability to represent recursion outside the domain of language.

To begin to resolve these issues, we have developed a new
method – the Visual Recursion Task (VRT) – testing whether
individuals can learn and apply recursive rules in the visual
domain. Because our task does not necessarily require linguis-
tic instructions or responses, it is well suited for non-linguistic
populations (e.g., young children, aphasia patients, and non-
human animals), and for experimental designs in which lin-
guistic resources cannot be used or are specifically blocked
(e.g., verbal interference paradigms).

This manuscript describes the first attempt to test human
adults in a visual recursion task. Here, we conducted four
experiments to characterize the cognitive resources associated
with visual recursion.

In the first experiment we showed that human adults can
represent and use recursion in the visuo-spatial domain. The
results support the hypothesis initially put forth (without em-
pirical evidence) that recursion is not restricted to the linguis-
tic domain (Pinker & Jackendoff, 2005). In our Experiment 1,
the ability to represent visual recursion seemed to require an-
alytic strategies, and was not influenced by esthetic biases
towards well-formed fractals. Crucially, our participants were
able to perform adequately in different trials with very distinct
visual patterns, both in a two-alternative forced-choice task
and in a single-choice paradigm.

In the second experiment, we tested whether the cognitive
resources used in visual recursion were somehow distinct
from visual iteration and general intelligence. The results sug-
gested that performance in VRTwas less correlated with gen-
eral visuo-spatial memory than EIT.

In Experiment 3, we replicated the findings of the first two
experiments without providing response feedback or training.
We also used a more homogeneous set of stimuli to achieve
good internal reliability.We found that participants did not use
simple similarity assessment strategies to solve VRT or EIT,
and that they were able to generalize information across trials,
without response feedback, suggesting that they were induc-
ing and applying abstract rules (Dewar & Xu, 2010).
Crucially, participants could not have used visual entropy or
“general configuration” analyses to make their decisions,
since correct and incorrect images were identical in these var-
iables. Furthermore, our results confirm that even when accu-
racy was similar, VRT and EIT showed very different response
profiles: (1) Iterative and recursive representations were asso-
ciated with better performance in different kinds of foil cate-
gories; and (2) participants seemed to be sensitive to the com-
plexity of the processes used to generate new hierarchical
levels in VRT, which confirms the assumption that in this task
participants were able to encode cross-level hierarchical
information.

Finally, in Experiment 4 we explicitly instructed our par-
ticipants on the concept of recursion and iteration prior to the

procedure, and assessed the cognitive correlates of the appli-
cation of recursive and iterative rules. We found that the ap-
plication of recursive rules in the visual domain specifically
correlated with performance in another potentially recursive
task (Tower of Hanoi), and confirmed that EIT correlates more
strongly with visuo-spatial memory resources than VRT.

All of these results are clearly consistent with the sugges-
tion that our novel visual task measures a cognitive construct
associated with recursive cognition, and show that human
adults are easily able to encode information regarding hierar-
chical self-similarity. Recent research from our laboratory has
also shown that visual recursion does not activate the classical
language areas in the brain (Martins, Fischmeister, et al.,
2014), that grammar development in children does not specif-
ically correlate with visual recursion (Martins, Laaha, et al.,
2014), and that verbal memory content does not interfere with
visual recursion (Martins, 2014). Taken together, these results
suggest that visual recursion might be independent from lan-
guage. However, we do not wish to claim that there is an
encapsulated module of visual recursion that is independent
from other cognitive systems. The ability to generate recursive
representations in the visual domain might be instantiated by
the specific combination of several cognitive systems avail-
able for other functions. These hypotheses are discussed in
detail elsewhere (Martins, 2012).

Beyond this specific debate, the results presented in this
manuscript also provide some insights into the cognitive na-
ture of recursive visual representations. In comparison to EIT,
performance in VRT seems to be better predicted by tasks
requiring prospective thinking (e.g., Tower of Hanoi), and less
associated with specific spatial working memory tasks. The
nature of this dissociation is consistent with the proposal that
recursive representations involve more abstract and parsimo-
nious rules than non-recursive representations (Helm, van
Lier, & Leeuwenberg, 1992). Here, by abstract, we mean
more general and not bound to specific hierarchical levels.
While iterative representations require a rule for each hierar-
chical level (Fig. 12), in recursive representations a single rule
can be used to represent the whole hierarchy, effectively
compressing information. The ability to generate compressed
and more abstract representations of hierarchical structures
may thus decrease the processing demands of visuo-spatial
resources (Alvarez, 2011; Brady & Alvarez, 2011). The great-
er the regularity of a visual structure, the better people are in
building abstract representations of it (Brady & Alvarez,
2011). This process of abstraction could then decrease the
need to store item-based representations, reducing the storage
and processing load upon visual working memory.

An alternative framework to interpret these relationships
between visual recursion, working memory, and Tower of
Hanoi is the Relational Complexity Theory (Halford et al.,
1998; Halford, Wilson, & Phillips, 2010). The core of this
theory is that higher cognition requires the ability to represent

Behav Res



relations between variables and that this relational processing
requires working memory. In particular, the complexity of a
cognitive process is the number of interacting variables that
must be represented in parallel to implement that process.
Under this framework, hierarchical structures are particularly
demanding, since they require the representation of high order
relations, with variables embedded within other variables. For
instance, solving a planning task such as the Tower of Hanoi
requires the maintenance of a long chain of sub-goals embed-
ded within other goals. The representation of the whole chain
would require the interaction of a number of variables which is
above human processing abilities (Halford et al., 1998). The
only strategy to make Tower of Hanoi tractable is to use con-
ceptual chunking and segmentation to reduce complexity. It
has been proposed (Halford et al., 1998) that it is the recursive
sub-goaling strategy (using chunking and segmentation) that
underlies successful performance. This requires the process-
ing of a set of pairwise relations between contiguous levels
(such as the relations “level1-level2,” “level2-level3,” “lev-
el3-level4”) using a representation that could describe all
cross-level relations within that hierarchy (e.g., level_above
(level_below)). In other words, the maximum reduction of the
goal hierarchy (level1 (level2 (level3 (level4)))), which re-
quires the simultaneous representation of four variables and
three relations, is the representation (level_above
(level_below)), which requires two variables, one relation,
and an external memory device to keep track of the number
of chunking/segmentation steps already performed. Our data
are quite preliminary in the understanding of these internal
representations, but they are also consistent with the general
relational complexity framework.

To conclude, contrary to Fitch et al. (2005) and Hauser
et al. (2002), the four studies presented here clearly show that
a cognitive capacity for recursion is not limited to language,
but is also available in the visual domain. Our new task opens
new methodological and conceptual paths to empirical inves-
tigations into the nature of recursive representations. We pre-
dict that extending this research to include language-impaired
populations, verbal-interference paradigms, participants at dif-
ferent developmental stages or cultures, and to non-human
animals will provide rich and varied experimental evidence
that can help to resolve ongoing debates concerning the role
of recursion in the evolution of human language.

Limitations

In the development of a new task for which there is no gold
standard, it is hard to gather irrefutable proof that the task
measures only what it is purported to measure. VRT is no
exception. It could be argued that our task can be solved using
either general capacities or simple visual heuristics. We tried
to control for these factors in a number of ways.

First, we have shown that VRT does not tap into general
intelligence resources since it is neither well correlated with
Matrix reasoning nor with RAVEN. Therefore VRT is some-
how specific.

Second, we have shown that VRT does not tap into general
visuo-spatial resources since it dissociates from spatial work-
ing memory and from a control visual task (EIT) that uses
similar visual stimuli. It is true that VRT and EIT are correlated
and yield similar accuracy levels. However, we found these
tasks were dissociated in a number of ways: (1) in Experiment
2 we have shown that only EIT is correlated with spatial
working memory (even when the variance explained by VRT
is taken into account); (2) in Experiment 3, we have shown
that performance in VRT is specifically sensitive to the com-
plexity of relations between hierarchical levels, demonstrating
that these hierarchical relations are being processed.
Furthermore, while in VRT participants reject more accurately
“repetition” foils, inEIT they reject more accurately “position-
al” foils; (3) in Experiment 4, we have shown thatVRT, but not
EIT, correlates with Tower of Hanoi (even when the variance
explained by EIT is taken into account); (4) Finally, in subse-
quent experiments, we have shown that VRT and EIT activate
different brain circuits: while EIT activates the classical visuo-
spatial dorsal stream (“where” information), VRT specifically
activates the ventral stream (“what” information), posterior
cingulate, medial frontal cortex, and medial temporal lobe,
which strongly suggests the latter task taps more into episodic
and semantic memory resources, and less on procedural sys-
tems (Martins, Fischmeister, et al., 2014). These brain imag-
ing results are coherent with the behavioral data reported here.

Third, we have shown that basic differences between
choice images, such as entropy, esthetic beauty, or low-
frequency spatial “overall configuration,” cannot account for
individuals’ performance since correct and incorrect images
were similar in these parameters. Crucially, visuo-spatial sim-
ple heuristics are usually associated with reliance in lower
spatial frequencies (e.g., Wenger & Towsend, 2000; Uttal,
2002), and this information simply could not have been used
to distinguish between choice images. Furthermore, we have
shown that participants are unlikely to use simple configura-
tion heuristics since they were able to reject two different
kinds of foil categories (randomly distributed across trials),
one of which (repetition foil) was more similar to the third
iteration than the correct choice. Even though the “repetition”
foil was identical to the third iteration, rejecting this foil re-
quires, at minimum, the understanding that VRT displays an
iterative process, in which the third image will be subjected to
some sort of transformation rule.

Fourth, we have shown that participants are very unlikely
to use idiosyncratic strategies to solve each trial, since there
was a high level of correlation between trials (internal reliabil-
ity), hinting at a common construct being represented, and
there was a learning effect across trials, hinting at knowledge
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being transmitted from trial to trial, and on the induction of a
general rule.

Finally, this rule is probably specifically related with recur-
sion, since VRT, but not EIT, correlates with Tower of Hanoi,
which as we discussed, invites a recursive solution. Taking all
these results together, the most parsimonious explanation is
that participants do represent the concept recursion while solv-
ing VRT.

Another limitation of this study is the omission of tech-
niques to systematically assess the cognitive styles used to
solve our tasks (analytic vs. intuitive). Without such data,
connecting our results with other theories, such as the relation-
al complexity theory (Halford et al., 1998, 2010) remains
speculative. Working out these details is an exciting challenge
for future research.
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